
Percona Kubernetes Operator for
Percona XtraDB Cluster

Release 1.4.0

Percona LLC and/or its affiliates 2009-2020

Apr 29, 2020

CONTENTS

I Requirements 2

1 System Requirements 3
1.1 Officially supported platforms . 3
1.2 Resource Limits . 3
1.3 Platform-specific limitations . 3

2 Design overview 4

II Installation 8

3 Install Percona XtraDB Cluster on Kubernetes 9

4 Install Percona XtraDB Cluster on OpenShift 11

5 Install Percona XtraDB Cluster on Minikube 13

6 Scale Percona XtraDB Cluster on Kubernetes and OpenShift 15
6.1 Increase the Persistent Volume Claim size . 15

7 Update Percona XtraDB Cluster Operator 17
7.1 Semi-automatic update . 17
7.2 Manual update . 18

8 Monitoring 19
8.1 Installing the PMM Server . 19
8.2 Installing the PMM Client . 19

9 Use docker images from a custom registry 21
9.1 Percona certified images . 22

10 Deploy Percona XtraDB Cluster with Service Broker 24

III Configuration 28

11 Users 29
11.1 Unprivileged users . 29
11.2 System Users . 29
11.3 Development Mode . 30

i

12 Custom Resource options 31
12.1 PXC Section . 31
12.2 ProxySQL Section . 35
12.3 PMM Section . 38
12.4 Backup Section . 39

13 Providing Backups 42
13.1 Making scheduled backups . 42
13.2 Making on-demand backup . 43
13.3 Restore the cluster from a previously saved backup . 43
13.4 Delete the unneeded backup . 44
13.5 Copy backup to a local machine . 44

14 Local Storage support for the Percona XtraDB Cluster Operator 46
14.1 emptyDir . 46
14.2 hostPath . 46

15 Binding Percona XtraDB Cluster components to Specific Kubernetes/OpenShift Nodes 47
15.1 Node selector . 47
15.2 Affinity and anti-affinity . 47

15.2.1 Simple approach - use topologyKey of the Percona XtraDB Cluster Operator 47
15.2.2 Advanced approach - use standard Kubernetes constraints 48

15.3 Tolerations . 49
15.4 Priority Classes . 49
15.5 Pod Disruption Budgets . 49

16 Changing MySQL Options 50
16.1 Edit the CR.yaml . 50
16.2 Use a ConfigMap . 50
16.3 Make changed options visible to the Percona XtraDB Cluster . 51
16.4 Auto-tuning MySQL options . 51

17 Configuring ProxySQL 52

18 Transport Layer Security (TLS) 53
18.1 Install and use the cert-manager . 53

18.1.1 About the cert-manager . 53
18.1.2 Installation of the cert-manager . 54

18.2 Generate certificates manually . 54
18.3 Run PXC without TLS . 55

19 Data-at-Rest Encryption 56
19.1 Installing Vault . 56
19.2 Configuring Vault . 57
19.3 Using the encryption . 58

20 Pause/resume Percona XtraDB Cluster 59

21 Crash Recovery 60
21.1 What does the full cluster crash mean? . 60
21.2 Bootstrap Crash Recovery method . 60
21.3 Object Surgery Crash Recovery method . 61

22 Debug 63

ii

IV Reference 64

23 Percona Kubernetes Operator for Percona XtraDB Cluster 1.4.0 Release Notes 65
23.1 Percona Kubernetes Operator for Percona XtraDB Cluster 1.4.0 . 65

23.1.1 New Features . 65
23.1.2 Improvements . 65
23.1.3 Bugs Fixed . 65

23.2 Percona Kubernetes Operator for Percona XtraDB Cluster 1.3.0 . 66
23.3 Percona Kubernetes Operator for Percona XtraDB Cluster 1.2.0 . 67
23.4 Percona Kubernetes Operator for Percona XtraDB Cluster 1.1.0 . 68
23.5 Percona Kubernetes Operator for Percona XtraDB Cluster 1.0.0 . 69

23.5.1 Installation . 69

Index 70

iii

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Kubernetes and the OpenShift platform, based on Kubernetes, have added a way to manage containerized systems,
including database clusters. This management is achieved by controllers, declared in configuration files. These con-
trollers provide automation with the ability to create objects, such as a container or a group of containers called pods,
to listen for an specific event and then perform a task.

This automation adds a level of complexity to the container-based architecture and stateful applications, such as a
database. A Kubernetes Operator is a special type of controller introduced to simplify complex deployments. The
Operator extends the Kubernetes API with custom resources.

CONTENTS 1

Part I

Requirements

2

CHAPTER

ONE

SYSTEM REQUIREMENTS

The Operator supports Percona XtraDB Cluster (PXC) 5.7 and 8.0.

The new caching_sha2_password authentication plugin which is default in 8.0 is not supported
for the ProxySQL compatibility reasons. Therefore both PXC 5.7 and 8.0 are configured with
default_authentication_plugin = mysql_native_password.

Officially supported platforms

The following platforms are supported:

• OpenShift 3.11

• OpenShift 4.2

• Google Kubernetes Engine (GKE) 1.13

• GKE 1.15

• Amazon Elastic Kubernetes Service (EKS) 1.15

• Minikube 1.16

Other Kubernetes platforms may also work but have not been tested.

Resource Limits

A cluster running an officially supported platform contains at least three Nodes, with the following resources:

• 2GB of RAM,

• 2 CPU threads per Node for Pods provisioning,

• at least 60GB of available storage for Private Volumes provisioning.

Platform-specific limitations

The Operator is subsequent to specific platform limitations.

• Minikube doesn’t support multi-node cluster configurations because of its local nature, which is in collision
with the default affinity requirements of the Operator. To arrange this, the Install Percona XtraDB Cluster on
Minikube instruction includes an additional step which turns off the requirement of having not less than three
Nodes.

3

CHAPTER

TWO

DESIGN OVERVIEW

Percona XtraDB Cluster integrates Percona Server for MySQL running with the XtraDB storage engine, and Percona
XtraBackup with the Galera library to enable synchronous multi-master replication.

The design of the operator is highly bound to the Percona XtraDB Cluster high availability implementation, which in
its turn can be briefly described with the following diagram.

4

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Being a regular MySQL Server instance, each node contains the same set of data synchronized accross nodes. The
recommended configuration is to have at least 3 nodes. In a basic setup with this amount of nodes, Percona XtraDB
Cluster provides high availability, continuing to function if you take any of the nodes down. Additionally load balanc-
ing can be achieved with the ProxySQL daemon, which accepts incoming traffic from MySQL clients and forwards it
to backend MySQL servers.

Note: Using ProxySQL results in more efficient database workload management in comparison with other load
balancers which are not SQL-aware, including built-in ones of the cloud providers, or the Kubernetes NGINX Ingress

5

https://proxysql.com/compare

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Controller.

To provide high availability operator uses node affinity to run PXC instances on separate worker nodes if possible. If
some node fails, the pod with it is automatically re-created on another node.

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A PersistentVolumeClaim (PVC)
is used to implement the automatic storage provisioning to pods. If a failure occurs, the Container Storage Interface
(CSI) should be able to re-mount storage on a different node. The PVC StorageClass must support this feature (Ku-
bernetes and OpenShift support this in versions 1.9 and 3.9 respectively).

The Operator functionality extends the Kubernetes API with PerconaXtraDBCluster object, and it is implemented as
a golang application. Each PerconaXtraDBCluster object maps to one separate PXC setup. The Operator listens to
all events on the created objects. When a new PerconaXtraDBCluster object is created, or an existing one undergoes
some changes or deletion, the operator automatically creates/changes/deletes all needed Kubernetes objects with the

6

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

appropriate settings to provide a properly PXC operating.

7

Part II

Installation

8

CHAPTER

THREE

INSTALL PERCONA XTRADB CLUSTER ON KUBERNETES

0. First of all, clone the percona-xtradb-cluster-operator repository:

git clone -b release-1.4.0 https://github.com/percona/percona-xtradb-cluster-
→˓operator
cd percona-xtradb-cluster-operator

Note: It is crucial to specify the right branch with -b option while cloning the code on this step. Please be
careful.

1. Now Custom Resource Definition for PXC should be created from the deploy/crd.yaml file. Custom
Resource Definition extends the standard set of resources which Kubernetes “knows” about with the new items
(in our case ones which are the core of the operator).

This step should be done only once; it does not need to be repeated with the next Operator deployments, etc.

$ kubectl apply -f deploy/crd.yaml

2. The next thing to do is to add the pxc namespace to Kubernetes, not forgetting to set the correspondent context
for further steps:

$ kubectl create namespace pxc
$ kubectl config set-context $(kubectl config current-context) --namespace=pxc

3. Now RBAC (role-based access control) for PXC should be set up from the deploy/rbac.yaml file. Briefly
speaking, role-based access is based on specifically defined roles and actions corresponding to them, allowed to
be done on specific Kubernetes resources (details about users and roles can be found in Kubernetes documenta-
tion).

$ kubectl apply -f deploy/rbac.yaml

Note: Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google
Kubernetes Engine can grant user needed privileges with the following command: $ kubectl create
clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin
--user=$(gcloud config get-value core/account)

Finally it’s time to start the operator within Kubernetes:

$ kubectl apply -f deploy/operator.yaml

9

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

4. Now that’s time to add the PXC Users secrets to Kubernetes. They should be placed in the data section of the
deploy/secrets.yaml file as logins and base64-encoded passwords for the user accounts (see Kubernetes
documentation for details).

Note: the following command can be used to get base64-encoded password from a plain text string: $ echo
-n 'plain-text-password' | base64

After editing is finished, users secrets should be created (or updated with the new passwords) using the following
command:

$ kubectl apply -f deploy/secrets.yaml

More details about secrets can be found in Users.

5. Now certificates should be generated. By default, the Operator generates certificates automatically, and no
actions are required at this step. Still, you can generate and apply your own certificates as secrets according to
the TLS instructions.

6. After the operator is started and user secrets are added, Percona XtraDB Cluster can be created at any time with
the following command:

$ kubectl apply -f deploy/cr.yaml

Creation process will take some time. The process is over when both operator and replica set pod have reached
their Running status:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
cluster1-pxc-0 1/1 Running 0 5m
cluster1-pxc-1 1/1 Running 0 4m
cluster1-pxc-2 1/1 Running 0 2m
cluster1-proxysql-0 1/1 Running 0 5m
percona-xtradb-cluster-operator-dc67778fd-qtspz 1/1 Running 0 6m

7. Check connectivity to newly created cluster

$ kubectl run -i --rm --tty percona-client --image=percona:5.7 --restart=Never --
→˓bash -il
percona-client:/$ mysql -h cluster1-proxysql -uroot -proot_password

10

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER

FOUR

INSTALL PERCONA XTRADB CLUSTER ON OPENSHIFT

0. First of all, clone the percona-xtradb-cluster-operator repository:

git clone -b release-1.4.0 https://github.com/percona/percona-xtradb-cluster-
→˓operator
cd percona-xtradb-cluster-operator

Note: It is crucial to specify the right branch with the-b option while cloning the code on this step. Please be
careful.

1. Now Custom Resource Definition for PXC should be created from the deploy/crd.yaml file. Custom
Resource Definition extends the standard set of resources which Kubernetes “knows” about with the new items
(in our case ones which are the core of the operator).

This step should be done only once; it does not need to be repeated with the next Operator deployments, etc.

$ oc apply -f deploy/crd.yaml

Note: Setting Custom Resource Definition requires your user to have cluster-admin role privileges.

If you want to manage your PXC cluster with a non-privileged user, necessary permissions can be granted by
applying the next clusterrole:

$ oc create clusterrole pxc-admin --verb="*" --resource=perconaxtradbclusters.pxc.
→˓percona.com,perconaxtradbclusters.pxc.percona.com/status,
→˓perconaxtradbclusterbackups.pxc.percona.com,perconaxtradbclusterbackups.pxc.
→˓percona.com/status,perconaxtradbclusterrestores.pxc.percona.com,
→˓perconaxtradbclusterrestores.pxc.percona.com/status
$ oc adm policy add-cluster-role-to-user pxc-admin <some-user>

If you have a cert-manager installed, then you have to execute two more commands to be able to manage
certificates with a non-privileged user:

$ oc create clusterrole cert-admin --verb="*" --resource=issuers.certmanager.k8s.
→˓io,certificates.certmanager.k8s.io
$ oc adm policy add-cluster-role-to-user cert-admin <some-user>

2. The next thing to do is to create a new pxc project:

$ oc new-project pxc

11

https://docs.cert-manager.io/en/release-0.8/getting-started/install/openshift.html

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

3. Now RBAC (role-based access control) for PXC should be set up from the deploy/rbac.yaml file. Briefly
speaking, role-based access is based on specifically defined roles and actions corresponding to them, allowed to
be done on specific Kubernetes resources (details about users and roles can be found in OpenShift documenta-
tion).

$ oc apply -f deploy/rbac.yaml

Finally, it’s time to start the operator within OpenShift:

$ oc apply -f deploy/operator.yaml

4. Now that’s time to add the PXC Users secrets to OpenShift. They should be placed in the data section of the
deploy/secrets.yaml file as logins and base64-encoded passwords for the user accounts (see Kubernetes
documentation for details).

Note: The following command can be used to get base64-encoded password from a plain text string: $ echo
-n 'plain-text-password' | base64

After editing is finished, users secrets should be created (or updated with the new passwords) using the following
command:

$ oc apply -f deploy/secrets.yaml

More details about secrets can be found in Users.

5. Now certificates should be generated. By default, the Operator generates certificates automatically, and no
actions are required at this step. Still, you can generate and apply your own certificates as secrets according to
the TLS instructions.

6. After the operator is started and user secrets are added, Percona XtraDB Cluster can be created at any time with
the following command:

$ oc apply -f deploy/cr.yaml

Creation process will take some time. The process is over when both operator and replica set pod have reached
their Running status:

$ oc get pods
NAME READY STATUS RESTARTS AGE
cluster1-pxc-0 1/1 Running 0 5m
cluster1-pxc-1 1/1 Running 0 4m
cluster1-pxc-2 1/1 Running 0 2m
cluster1-proxysql-0 1/1 Running 0 5m
percona-xtradb-cluster-operator-dc67778fd-qtspz 1/1 Running 0 6m

7. Check connectivity to newly created cluster

$ oc run -i --rm --tty percona-client --image=percona:5.7 --restart=Never -- bash
→˓-il
percona-client:/$ mysql -h cluster1-proxysql -uroot -proot_password

12

https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER

FIVE

INSTALL PERCONA XTRADB CLUSTER ON MINIKUBE

Installing the PXC Operator on minikube is the easiest way to try it locally without a cloud provider. Minikube
runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide hypervisor, such as VirtualBox,
KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test the Kubernetes application locally prior
to deploying it on a cloud.

The following steps are needed to run PXC Operator on Minikube:

0. Install Minikube, using a way recommended for your system. This includes the installation of the following
three components: #. kubectl tool, #. a hypervisor, if it is not already installed, #. actual Minikube package

After the installation, run minikube start --memory=4096 --cpus=3 (parameters increase the vir-
tual machine limits for the CPU cores and memory, to ensure stable work of the Operator). Being executed, this
command will download needed virtualized images, then initialize and run the cluster. After Minikube is suc-
cessfully started, you can optionally run the Kubernetes dashboard, which visually represents the state of your
cluster. Executing minikube dashboard will start the dashboard and open it in your default web browser.

1. Clone the percona-xtradb-cluster-operator repository:

git clone -b release-1.4.0 https://github.com/percona/percona-xtradb-cluster-
→˓operator
cd percona-xtradb-cluster-operator

2. Deploy the operator with the following command:

kubectl apply -f deploy/bundle.yaml

3. Because minikube runs locally, the default deploy/cr.yaml file should be edited to adapt the Operator for
the the local installation with limited resources. Change the following keys in pxc and proxysql sections:

(a) comment resources.requests.memory and resources.requests.cpu keys (this will fit the
Operator in minikube default limitations)

(b) set affinity.antiAffinityTopologyKey key to "none" (the Operator will be unable to spread
the cluster on several nodes)

Also, switch allowUnsafeConfigurations key to true (this option turns off the Operator’s control
over the cluster configuration, making it possible to deploy Percona XtraDB Cluster as a one-node cluster).

4. Now apply the deploy/cr.yaml file with the following command:

kubectl apply -f deploy/cr.yaml

5. During previous steps, the Operator has generated several secrets, including the password for the root user,
which you will definitely need to access the cluster. Use kubectl get secrets to see the list of Secrets
objects (by default Secrets object you are interested in has my-cluster-secrets name). Then kubectl

13

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/concepts/configuration/secret/

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

get secret my-cluster-secrets -o yaml will return the YAML file with generated secrets, in-
cluding the root password which should look as follows:

...
data:
...
root: cm9vdF9wYXNzd29yZA==

Here the actual password is base64-encoded, and echo 'cm9vdF9wYXNzd29yZA==' | base64
--decode will bring it back to a human-readable form.

6. Check connectivity to a newly created cluster.

First of all, run percona-client and connect its console output to your terminal (running it may require some time
to deploy the correspondent Pod):

kubectl run -i --rm --tty percona-client --image=percona:5.7 --restart=Never --
→˓bash -il

Now run mysql tool in the percona-client command shell using the password obtained from the secret:

mysql -h cluster1-proxysql -uroot -proot_password

14

CHAPTER

SIX

SCALE PERCONA XTRADB CLUSTER ON KUBERNETES AND
OPENSHIFT

One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an application scaling.
Scaling a Deployment up or down ensures new Pods are created and set to available Kubernetes nodes.

Size of the cluster is controlled by a size key in the Custom Resource options configuration, as specified in the
Operator Options section. That’s why scaling the cluster needs nothing more but changing this option and applying
the updated configuration file. This may be done in a specifically saved config, or on the fly, using the following
command, which saves the current configuration, updates it and applies the changed version:

$ kubectl get pxc/my-cluster -o yaml | sed -e 's/size: 3/size: 5/' | kubectl apply -f
→˓-

In this example we have changed the size of the Percona XtraDB Cluster from 3, which is a minimum recommended
value, to 5 nodes.

Note: Using ‘‘kubectl scale StatefulSet_name‘‘ command to rescale Percona XtraDB Cluster is not recommended,
as it makes ‘‘size‘‘ configuration option out of sync, and the next config change may result in reverting the previous
number of nodes.

Increase the Persistent Volume Claim size

Kubernetes manages storage with a PersistentVolume (PV), a segment of storage supplied by the administrator, and a
PersistentVolumeClaim (PVC), a request for storage from a user. In Kubernetes v1.11 the feature was added to allow a
user to increase the size of an existing PVC object. The user cannot shrink the size of an existing PVC object. Certain
volume types support, be default, expanding PVCs (details about PVCs and the supported volume types can be found
in Kubernetes documentation)

The following are the steps to increase the size:

0. Extract and backup the yaml file for the cluster

kubectl get pxc cluster1 -o yaml --export > CR_backup.yaml

1. Delete the cluster

kubectl delete -f CR_backup.yaml

2. For each node, edit the yaml to resize the PVC object.

kubectl edit pvc datadir-cluster1-pxc-0

In the yaml, edit the spec.resources.requests.storage value.

15

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

spec:
accessModes:
- ReadWriteOnce
resources:

requests:
storage: 6Gi

Perform the same operation on the other nodes.

kubectl edit pvc datadir-cluster1-pxc-1
kubectl edit pvc datadir-cluster1-pxc-2

3. In the CR configuration file, use vim or another text editor to edit the PVC size.

vim CR_backup.yaml

4. Apply the updated configuration to the cluster.

kubectl apply -f CR_backup.yaml

6.1. Increase the Persistent Volume Claim size 16

CHAPTER

SEVEN

UPDATE PERCONA XTRADB CLUSTER OPERATOR

Starting from the version 1.1.0 the Percona Kubernetes Operator for Percona XtraDB Cluster allows upgrades to newer
versions. This upgrade can be done either in semi-automatic or in manual mode.

Note: The manual update mode is the recomended way for a production cluster.

Note: Only the incremental update to a nearest minor version is supported (for example, update from 1.2.0 to 1.3.0).
To update to a newer version, which differs from the current version by more than one, make several incremental
updates sequentially.

Semi-automatic update

1. Edit the deploy/cr.yaml file, setting updateStrategy key to RollingUpdate.

2. Now you should apply a patch to your deployment, supplying necessary image names with a newer version
tag. This is done with the kubectl patch deployment command. For example, updating to the 1.4.0
version should look as follows:

kubectl patch deployment percona-xtradb-cluster-operator \
-p'{"spec":{"template":{"spec":{"containers":[{"name":"percona-xtradb-cluster-

→˓operator","image":"percona/percona-xtradb-cluster-operator:1.4.0"}]}}}}'

kubectl patch pxc cluster1 --type=merge --patch '{
"metadata": {"annotations":{ "kubectl.kubernetes.io/last-applied-configuration

→˓": "{\"apiVersion\":\"pxc.percona.com/v1-3-0\"}" }},
"spec": {"pxc":{ "image": "percona/percona-xtradb-cluster-operator:1.4.0-pxc" }

→˓,
"proxysql": { "image": "percona/percona-xtradb-cluster-operator:1.4.0-

→˓proxysql" },
"backup": { "image": "percona/percona-xtradb-cluster-operator:1.4.0-

→˓backup" },
"pmm": { "image": "percona/percona-xtradb-cluster-operator:1.4.0-pmm"

→˓}
}}'

3. The deployment rollout will be automatically triggered by the applied patch. You can track the rollout process
in real time with the kubectl rollout status command with the name of your cluster:

kubectl rollout status sts cluster1-pxc

17

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Manual update

1. Edit the deploy/cr.yaml file, setting updateStrategy key to OnDelete.

2. Now you should apply a patch to your deployment, supplying necessary image names with a newer version
tag. This is done with the kubectl patch deployment command. For example, updating to the 1.4.0
version should look as follows:

kubectl patch deployment percona-xtradb-cluster-operator \
-p'{"spec":{"template":{"spec":{"containers":[{"name":"percona-xtradb-cluster-

→˓operator","image":"percona/percona-xtradb-cluster-operator:1.4.0"}]}}}}'

kubectl patch pxc cluster1 --type=merge --patch '{
"metadata": {"annotations":{ "kubectl.kubernetes.io/last-applied-configuration

→˓": "{\"apiVersion\":\"pxc.percona.com/v1-3-0\"}" }},
"spec": {"pxc":{ "image": "percona/percona-xtradb-cluster-operator:1.4.0-pxc" }

→˓,
"proxysql": { "image": "percona/percona-xtradb-cluster-operator:1.4.0-

→˓proxysql" },
"backup": { "image": "percona/percona-xtradb-cluster-operator:1.4.0-

→˓backup" },
"pmm": { "image": "percona/percona-xtradb-cluster-operator:1.4.0-pmm"

→˓}
}}'

3. The Pod with the newer Percona XtraDB Cluster image will start after you delete it. Delete targeted Pods
manually one by one to make them restart in desired order:

(a) Delete the Pod using its name with the command like the following one:

kubectl delete pod cluster1-pxc-2

(b) Wait until Pod becomes ready:

kubectl get pod cluster1-pxc-2

The output should be like this:

NAME READY STATUS RESTARTS AGE
cluster1-pxc-2 1/1 Running 0 3m33s

4. The update process is successfully finished when all Pods have been restarted.

7.2. Manual update 18

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

CHAPTER

EIGHT

MONITORING

The Percona Monitoring and Management (PMM) provides an excellent solution to monitor Percona XtraDB Cluster.

Installing the PMM Server

This first section installs the PMM Server to monitor Percona XtraDB Cluster on Kubernetes or OpenShift. The
following steps are optional if you already have installed the PMM Server. The PMM Server available on your
network does not require another installation in Kubernetes.

1. The recommended installation approach is based on using helm - the package manager for Kubernetes, which
will substantially simplify further steps. So first thing to do is to install helm following its official installation
instructions.

2. When the helm is installed, add Percona chart repository and update information of available charts as follows:

$ helm repo add percona https://percona-charts.storage.googleapis.com
$ helm repo update

3. Now helm can be used to install PMM Server:

$ helm install percona/pmm-server --name monitoring --set platform=openshift --
→˓set credentials.username=pmm --set "credentials.password=supa|^|pazz"

It is important to specify correct options in the installation command:

• platform should be either kubernetes or openshift depending on which platform are you using.

• name should correspond to the serverHost key in the pmm section of the deploy/cr.yaml file with a
“-service” suffix, so default --name monitoring part of the shown above command corresponds to a
monitoring-service value of the serverHost key.

• credentials.username should correspond to the serverUser key in the pmm section of the de-
ploy/cr.yaml file.

• credentials.password should correspond to a value of the pmmserver secret key specified in
deploy/secrets.yaml secrets file. Note that password specified in this example is the default devel-
opment mode password not intended to be used on production systems.

Installing the PMM Client

The following steps are needed for the PMM client installation:

1. The PMM client installation is initiated by updating the pmm section in the deploy/cr.yaml file.

19

https://www.percona.com/doc/percona-xtradb-cluster/LATEST/manual/monitoring.html#using-pmm
https://github.com/helm/helm
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

• set pmm.enabled=true

• make sure that serverUser (the PMM Server user name, pmm by default) is the same as one specified
for the credentials.username parameter on the previous step.

• make sure that serverHost (the PMM service name, monitoring-service by default) is the same
as one specified for the name parameter on the previous step, but with additional -service suffix.

• make sure that pmmserver secret key in the deploy/secrets.yaml secrets file is the same as one
specified for the credentials.password parameter on the previous step (if not, fix it and apply with
the kubectl apply -f deploy/secrets.yaml command).

When done, apply the edited deploy/cr.yaml file:

$ kubectl apply -f deploy/cr.yaml

2. To make sure everything gone right, check that correspondent Pods are not continuously restarting (which would
occur in case of any errors on the previous two steps):

$ kubectl get pods
$ kubectl logs cluster1-pxc-node-0 -c pmm-client

3. Find the external IP address (EXTERNAL-IP field in the output of kubectl get service/
monitoring-service -o wide). This IP address can be used to access PMM via https in a web browser,
with the login/password authentication, already configured and able to show Percona XtraDB Cluster metrics.

8.2. Installing the PMM Client 20

https://www.percona.com/doc/percona-xtradb-cluster/LATEST/manual/monitoring.html#using-pmm

CHAPTER

NINE

USE DOCKER IMAGES FROM A CUSTOM REGISTRY

Using images from a private Docker registry may be useful in different situations: it may be related to storing images
inside of a company, for privacy and security reasons, etc. In such cases, Percona XtraDB Cluster Operator allows to
use a custom registry, and the following instruction illustrates how this can be done by the example of the Operator
deployed in the OpenShift environment.

1. First of all login to the OpenShift and create project.

$ oc login
Authentication required for https://192.168.1.100:8443 (openshift)
Username: admin
Password:
Login successful.
$ oc new-project pxc
Now using project "pxc" on server "https://192.168.1.100:8443".

2. There are two things you will need to configure your custom registry access:

• the token for your user

• your registry IP address.

The token can be find out with the following command:

$ oc whoami -t
ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s

And the following one tells you the registry IP address:

$ kubectl get services/docker-registry -n default
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry ClusterIP 172.30.162.173 <none> 5000/TCP 1d

3. Now you can use the obtained token and address to login to the registry:

$ docker login -u admin -p ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s 172.30.162.
→˓173:5000
Login Succeeded

4. Pull the needed image by its SHA digest:

$ docker pull docker.io/perconalab/percona-xtradb-cluster-
→˓operator@sha256:841c07eef30605080bfe80e549f9332ab6b9755fcbc42aacbf86e4ac9ef0e444
Trying to pull repository docker.io/perconalab/percona-xtradb-cluster-operator ...
sha256:841c07eef30605080bfe80e549f9332ab6b9755fcbc42aacbf86e4ac9ef0e444: Pulling
→˓from docker.io/perconalab/percona-xtradb-cluster-operator

21

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Digest: sha256:841c07eef30605080bfe80e549f9332ab6b9755fcbc42aacbf86e4ac9ef0e444
Status: Image is up to date for docker.io/perconalab/percona-xtradb-cluster-
→˓operator@sha256:841c07eef30605080bfe80e549f9332ab6b9755fcbc42aacbf86e4ac9ef0e444

5. The following way is used to push an image to the custom registry (into the OpenShift pxc project):

$ docker tag \
docker.io/perconalab/percona-xtradb-cluster-

→˓operator@sha256:841c07eef30605080bfe80e549f9332ab6b9755fcbc42aacbf86e4ac9ef0e444
→˓\

172.30.162.173:5000/pxc/percona-xtradb-cluster-operator:1.2.0
$ docker push 172.30.162.173:5000/pxc/percona-xtradb-cluster-operator:1.2.0

6. Check the image in the OpenShift registry with the following command:

$ oc get is
NAME DOCKER REPO
→˓ TAGS UPDATED
percona-xtradb-cluster-operator docker-registry.default.svc:5000/pxc/percona-
→˓xtradb-cluster-operator 1.4.0 2 hours ago

7. When the custom registry image is Ok, put a Docker Repo + Tag string (it should look
like docker-registry.default.svc:5000/pxc/percona-xtradb-cluster-operator:1.
4.0) into the image: option in deploy/operator.yaml configuration file.

Please note it is possible to specify imagePullSecrets option for all images, if the registry requires authen-
tication.

8. Repeat steps 3-5 for other images, and update corresponding options in the deploy/cr.yaml file.

9. Now follow the standard Percona XtraDB Cluster Operator installation instruction.

Percona certified images

Following table presents Percona’s certified images to be used with the Percona XtraDB Cluster Operator:

9.1. Percona certified images 22

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Image Digest
percona/percona-xtradb-cluster-
operator:1.4.0

277d62967e94dc4e7d0569656413967e6a8597842753da05f083543e68c9b719

percona/percona-xtradb-cluster-
operator:1.4.0-proxysql

1ee8b9c291dac955dd98441187476fe8c3b5a4930e9e4dc39b9534376d0cc4f2

percona/percona-xtradb-cluster-
operator:1.4.0-pxc8.0

58296417cc97378b906e12855cb1f4f2420f06168d2096acc08a93c8afa793f6

percona/percona-xtradb-cluster-
operator:1.4.0-pxc8.0-backup

566ea1f6cf9387a06898d5f7af15189ed577d3af771d5954b2e869593b80cb6b

percona/percona-xtradb-cluster-
operator:1.4.0-pxc5.7

4ff39dab7872a4b45250ca170604f6bce1fcc52510407f6cbd93cd81f5a32d8f

percona/percona-xtradb-cluster-
operator:1.4.0-pxc5.7-backup

ca8e3fd49d3a2ac15c0b9c44f8ea4e0f8240789de274859a91ec9cd8d8e80763

percona/percona-xtradb-cluster-
operator:1.4.0-pmm

28bbb6693689a15c407c85053755334cd25d864e632ef7fed890bc85726cfb68

percona/percona-xtradb-cluster-
operator:1.3.0

85cfaf78394e21b722be92015912c39e483f7ae5de1aab114293520a3825eb99

percona/percona-xtradb-cluster-
operator:1.3.0-proxysql

8e40dec83008894aaa438f31233acb90f29969ad660cce26b700075eeaf9d34b

percona/percona-xtradb-cluster-
operator:1.3.0-pxc

a7d04c0a343fd0b7f08a306bb9f00b6df2f398bb7163990ba787f037c294853e

percona/percona-xtradb-cluster-
operator:1.3.0-backup

f786d92d96c5036df1785647d323081235c06fad56653ca93ae44af85c2d19e8

percona/percona-xtradb-cluster-
operator:1.3.0-pmm

28bbb6693689a15c407c85053755334cd25d864e632ef7fed890bc85726cfb68

percona/percona-xtradb-cluster-
operator:1.2.0

841c07eef30605080bfe80e549f9332ab6b9755fcbc42aacbf86e4ac9ef0e444

percona/percona-xtradb-cluster-
operator:1.2.0-pxc

d38482fcbe0d0f169e41eefd889404e967e8abc65a6890cbab4dd1f3ea2229df

percona/percona-xtradb-cluster-
operator:1.2.0-proxysql

1385b77d3498cebc201426821fda620e0884e8fdaba6756240c9821948864af3

percona/percona-xtradb-cluster-
operator:1.2.0-backup

bd45486507321de67ff8ad2fa40c4f55fc20bd15db6369b61c73a5db11bb57cd

percona/percona-xtradb-cluster-
operator:1.2.0-broker

c0903f41539767fcfe49da815e1c3bfefe4e48a36912b64fb5350b09b51cab32

percona/percona-xtradb-cluster-
operator:1.2.0-pmm

28bbb6693689a15c407c85053755334cd25d864e632ef7fed890bc85726cfb68

percona/percona-xtradb-cluster-
operator:1.1.0

fbfc2fc5c3afc80f18dddc5a1c3439fab89950081cf86c3439a226d4c97198eb

percona/percona-xtradb-cluster-
operator:1.1.0-pxc

a66a9212760e823af3c666a78e4b480cc7cc0d8be5cfa29c8141319c0036706e

percona/percona-xtradb-cluster-
operator:1.1.0-proxysql

ac952afb3721eafe86431155da7c3f7f90c4e800491c400a4222b650fd393357

percona/percona-xtradb-cluster-
operator:1.1.0-backup

4852da039dd2a1d3ae9243ec634c14fd9f9e5af18a1fc6c7c9d25d4287dd6941

percona/percona-xtradb-cluster-
operator:1.0.0

b9e97c66a69f448898f8d43b92dd0314aaf53997b70824056dd3d0aec62488eb

percona/percona-xtradb-cluster-
operator:1.0.0-pxc

6797c8492cff8092b39cdce75d7d85b9c2d4d08c4f6e0ba7b05c21562a54f168

percona/percona-xtradb-cluster-
operator:1.0.0-proxysql

b9360f1a8dc1e57e5ae7442373df02869ddc4da69ef9190190edde70b465235e

percona/percona-xtradb-cluster-
operator:1.0.0-backup

652be455c8faf2d610de15e3568ff57fe8630fa353b6d97ff1c6b91d44741f8b

9.1. Percona certified images 23

CHAPTER

TEN

DEPLOY PERCONA XTRADB CLUSTER WITH SERVICE BROKER

Percona Service Broker provides the Open Service Broker object to facilitate the operator deployment within high-
level visual tools. Following steps are needed to use it while installing the Percona XtraDB Cluster on the OpenShift
platform:

1. The Percona Service Broker is to be deployed based on the percona-broker.yaml file. To use it you
should first enable the Service Catalog, which can be done with the following command:

$ oc patch servicecatalogapiservers cluster --patch '{"spec":{"managementState":
→˓"Managed"}}' --type=merge
$ oc patch servicecatalogcontrollermanagers cluster --patch '{"spec":{
→˓"managementState":"Managed"}}' --type=merge

When Service Catalog is enabled, download and install the Percona Service Broker in a typical OpenShift way:

$ oc apply -f https://raw.githubusercontent.com/Percona-Lab/percona-dbaas-cli/
→˓broker/deploy/percona-broker.yaml

Note: This step should be done only once; the step does not need to be repeated with any other Operator
deployments. It will automatically create and setup the needed service and projects catalog with all necessary
objects.

2. Now login to your OpenShift Console Web UI and switch to the percona-service-broker project. You can check
its Pod running on a correspondent page:

24

https://www.openservicebrokerapi.org/
https://docs.openshift.com/container-platform/4.1/applications/service_brokers/installing-service-catalog.html
https://github.com/openshift/console

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Now switch to the Developer Catalog and select Percona XtraDB Cluster Operator:

25

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Choose Percona XtraDB Cluster Operator item. This will lead you to the Operator page with the
Create Service Instance button.

3. Clicking the Create Service Instance button guides you to the next page:

The two necessary fields are Service Instance Name and Cluster Name, which should be unique for your project.

4. Clicking the Create button gets you to the Overview page, which reflects the process of the cluster creation
process:

26

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

You can also track Pods to see when they are deployed and track any errors.

27

Part III

Configuration

28

CHAPTER

ELEVEN

USERS

The Operator requires Kubernetes Secrets to be deployed before the PXC Cluster is started. The name of the required
secrets can be set in deploy/cr.yaml under the spec.secretsName section.

Unprivileged users

There are no unprivileged (general purpose) user accounts created by default. If you need general purpose users, please
run commands below:

$ kubectl run -it --rm percona-client --image=percona:5.7 --restart=Never -- mysql -
→˓hcluster1-pxc -uroot -proot_password
mysql> GRANT ALL PRIVILEGES ON database1.* TO 'user1'@'%' IDENTIFIED BY 'password1';

Sync users on the ProxySQL node:

$ kubectl exec -it cluster1-proxysql-0 -- proxysql-admin --config-file=/etc/proxysql-
→˓admin.cnf --syncusers

Verify that the user was created successfully. If successful, the following command will let you successfully login to
MySQL shell via ProxySQL:

$ kubectl run -it --rm percona-client --image=percona:5.7 --restart=Never -- bash -il
percona-client:/$ mysql -h cluster1-proxysql -uuser1 -ppassword1
mysql> SELECT * FROM database1.table1 LIMIT 1;

You may also try executing any simple SQL statement to ensure the permissions have been successfully granted.

System Users

Default Secret name: my-cluster-secrets

Secret name field: spec.secretsName

The Operator requires system-level PXC users to automate the PXC deployment.

Warning: These users should not be used to run an application.

29

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

User Pur-
pose

Username Password
Secret
Key

Description

Admin root root Database ad-
ministrative
user, should
only be used
for maintenance
tasks

ProxySQLAdminproxyadmin proxyadmin ProxySQL ad-
ministrative
user, can be
used to add
general-purpose
ProxySQL users

Backup xtrabackup xtrabackup User to run back-
ups

Cluster
Check

clustercheck clustercheck User for liveness
checks and readi-
ness checks

PMM
Client
User

monitor monitor User for PMM
agent

PMM
Server
Password

should
be set
through
the op-
erator
options

pmmserver Password used
to access PMM
Server

Development Mode

To make development and testing easier, deploy/secrets.yaml secrets file contains default passwords for PXC
system users.

These development mode credentials from deploy/secrets.yaml are:

Secret Key Secret Value
root root_password
xtrabackup backup_password
monitor monitor
clustercheck clustercheckpassword
proxyuser s3cret
proxyadmin admin_password
pmmserver supa|^|pazz

Warning: Do not use the default PXC user passwords in production!

11.3. Development Mode 30

https://github.com/sysown/proxysql/wiki/Users-configuration
https://github.com/sysown/proxysql/wiki/Users-configuration
https://github.com/sysown/proxysql/wiki/Users-configuration
https://www.percona.com/doc/percona-xtrabackup/2.4/using_xtrabackup/privileges.html
https://www.percona.com/doc/percona-xtrabackup/2.4/using_xtrabackup/privileges.html
http://galeracluster.com/library/documentation/monitoring-cluster.html
http://galeracluster.com/library/documentation/monitoring-cluster.html
http://galeracluster.com/library/documentation/monitoring-cluster.html
https://www.percona.com/doc/percona-monitoring-and-management/security.html#pmm-security-password-protection-enabling
https://www.percona.com/doc/percona-monitoring-and-management/security.html#pmm-security-password-protection-enabling
https://www.percona.com/doc/percona-monitoring-and-management/security.html#pmm-security-password-protection-enabling
https://www.percona.com/doc/percona-monitoring-and-management/security.html#pmm-security-password-protection-enabling
https://www.percona.com/doc/percona-monitoring-and-management/security.html#pmm-security-password-protection-enabling

CHAPTER

TWELVE

CUSTOM RESOURCE OPTIONS

The operator is configured via the spec section of the deploy/cr.yaml file. This file contains the following spec sections
to configure three main subsystems of the cluster:

Key Value
type

Default Description

pxc subdoc Percona XtraDB Cluster general
section

proxysql subdoc ProxySQL section
pmm subdoc Percona Monitoring and Manage-

ment section
backup subdoc Percona XtraDB Cluster backups

section
allowUnsafeConfigurations boolean false Prevents users from configuring

a cluster with unsafe parameters
such as starting the cluster with
less than 3 nodes or starting the
cluster without TLS/SSL certifi-
cates

secretsName string my-cluster-secrets A name for users secrets
vaultSecretName string keyring-secret-vault A secret for the HashiCorp Vault

to carry on Data-at-Rest Encryp-
tion

sslSecretName string my-cluster-ssl A secret with TLS certificate gen-
erated for external communica-
tions, see Transport Layer Secu-
rity (TLS) for details

sslInternalSecretName string my-cluster-ssl-internal A secret with TLS certificate gen-
erated for internal communica-
tions, see Transport Layer Secu-
rity (TLS) for details

PXC Section

The pxc section in the deploy/cr.yaml file contains general configuration options for the Percona XtraDB Cluster.

Key pxc.size
Value int
Example 3

Continued on next page

31

https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://www.vaultproject.io/
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Table 12.1 – continued from previous page
Description The size of the Percona XtraDB cluster must be >= 3 for High Availability

Key pxc.image
Value string
Example percona/percona-xtradb-cluster-operator:1.4.0-pxc
Description The Docker image of the Percona cluster used

Key pxc.readinessDelaySec
Value int
Example 15
Description Adds a delay before a run check to verify the application is ready to process traffic

Key pxc.livenessDelaySec
Value int
Example 300
Description Adds a delay before the run check ensures the application is healthy and capable of processing

requests

Key pxc.forceUnsafeBootstrap
Value boolean
Example false
Description The setting can be reset in case of a sudden crash when all nodes may be considered unsafe

to bootstrap from. The setting lets a node be selected and set to safe_to_bootstrap and
provides data recovery

Key pxc.configuration
Value string
Example |

[mysqld]
wsrep_debug=ON
wsrep-provider_options=gcache.size=1G;gcache.recover=yes

Description The my.cnf file options to be passed to Percona XtraDB cluster nodes

Key pxc.imagePullSecrets.name
Value string
Example private-registry-credentials
Description The Kubernetes ImagePullSecret

Key pxc.priorityClassName
Value string
Example high-priority
Description The Kubernetes Pod priority class

Key pxc.schedulerName
Value string
Example default-scheduler
Description The Kubernetes Scheduler

Key pxc.annotations
Value label

Continued on next page

12.1. PXC Section 32

https://www.percona.com/doc/percona-xtradb-cluster/5.7/intro.html
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Table 12.1 – continued from previous page
Example iam.amazonaws.com/role: role-arn
Description The Kubernetes annotations

Key pxc.labels
Value label
Example rack: rack-22
Description Labels are key-value pairs attached to objects

Key pxc.resources.requests.memory
Value string
Example 1G
Description The Kubernetes memory requests for a PXC container

Key pxc.resources.requests.cpu
Value string
Example 600m
Description Kubernetes CPU requests for a PXC container

Key pxc.resources.limits.memory
Value string
Example 1G
Description Kubernetes memory limits for a PXC container

Key pxc.nodeSelector
Value label
Example disktype: ssd
Description Kubernetes nodeSelector

Key pxc.affinity.topologyKey
Value string
Example kubernetes.io/hostname
Description The Operator topology key node anti-affinity constraint

Key pxc.affinity.advanced
Value subdoc
Example
Description In cases where the Pods require complex tuning the advanced option turns off the topologyKey

effect. This setting allows the standard Kubernetes affinity constraints of any complexity to be
used

Key pxc.tolerations
Value subdoc
Example node.alpha.kubernetes.io/unreachable
Description Kubernetes Pod tolerations

Key pxc.podDisruptionBudget.maxUnavailable
Value int
Example 1
Description The Kubernetes podDisruptionBudget specifies the number of Pods from the set unavailable after

the eviction
Continued on next page

12.1. PXC Section 33

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Table 12.1 – continued from previous page

Key pxc.podDisruptionBudget.minAvailable
Value int
Example 0
Description The Kubernetes podDisruptionBudget Pods that must be available after an eviction

Key pxc.volumeSpec.emptyDir
Value string
Example {}
Description The Kubernetes emptyDir volume The directory created on a node and accessible to the PXC Pod

containers

Key pxc.volumeSpec.hostPath.path
Value string
Example /data
Description Kubernetes hostPath The volume that mounts a directory from the host node’s filesystem into

your Pod. The path property is required

Key pxc.volumeSpec.hostPath.type
Value string
Example Directory
Description The Kubernetes hostPath. An optional property for the hostPath

Key pxc.volumeSpec.persistentVolumeClaim.storageClassName
Value string
Example standard
Description Set the Kubernetes storage class to use with the PXC PersistentVolumeClaim

Key pxc.volumeSpec.persistentVolumeClaim.accessModes
Value array
Example [ReadWriteOnce]
Description The Kubernetes PersistentVolumeClaim access modes for the Percona XtraDB cluster

Key pxc.volumeSpec.resources.requests.storage
Value string
Example 6Gi
Description The Kubernetes PersistentVolumeClaim size for the Percona XtraDB cluster

Key pxc.gracePeriod
Value int
Example 600
Description The Kubernetes grace period when terminating a Pod

Key pxc.containerSecurityContext
Value subdoc
Example privileged: true
Description A custom Kubernetes Security Context for a Container to be used instead of the default one

Key pxc.podSecurityContext
Value subdoc

Continued on next page

12.1. PXC Section 34

https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Table 12.1 – continued from previous page
Example fsGroup: 1001

supplementalGroups: [1001, 1002, 1003]
Description A custom Kubernetes Security Context for a Pod to be used instead of the default one

ProxySQL Section

The proxysql section in the deploy/cr.yaml file contains configuration options for the ProxySQL daemon.

Key proxysql.enabled
Value boolean
Example true
Description Enables or disables load balancing with ProxySQL Services

Key proxysql.size
Value int
Example 1
Description The number of the ProxySQL daemons to provide load balancing must be = 1 in current release

Key proxysql.image
Value string
Example percona/percona-xtradb-cluster-operator:1.4.0-proxysql
Description ProxySQL Docker image to use

Key proxysql.imagePullSecrets.name
Value string
Example private-registry-credentials
Description The Kubernetes imagePullSecrets for the ProxySQL image

Key proxysql.annotations
Value label
Example iam.amazonaws.com/role: role-arn
Description The Kubernetes annotations metadata

Key proxysql.labels
Value label
Example rack: rack-22
Description Labels are key-value pairs attached to objects

Key proxysql.servicetype
Value string
Example ClusterIP
Description Specifies the type of Kubernetes Service to be used

Key proxysql.resources.requests.memory
Value string
Example 1G
Description The Kubernetes memory requests for the main ProxySQL container

Key proxysql.resources.requests.cpu
Continued on next page

12.2. ProxySQL Section 35

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://www.percona.com/doc/percona-xtradb-cluster/5.7/howtos/proxysql.html
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.percona.com/doc/percona-xtradb-cluster/5.7/howtos/proxysql.html
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Table 12.2 – continued from previous page
Value string
Example 600m
Description Kubernetes CPU requests for the main ProxySQL container

Key proxysql.resources.limits.memory
Value string
Example 1G
Description Kubernetes memory limits for the main ProxySQL container

Key proxysql.resources.limits.cpu
Value string
Example 700m
Description Kubernetes CPU limits for the main ProxySQL container

Key proxysql.sidecarResources.requests.memory
Value string
Example 1G
Description The Kubernetes memory requests for the sidecar ProxySQL containers

Key proxysql.sidecarResources.requests.cpu
Value string
Example 500m
Description Kubernetes CPU requests for the sidecar ProxySQL containers

Key proxysql.sidecarResources.limits.memory
Value string
Example 2G
Description Kubernetes memory limits for the sidecar ProxySQL containers

Key proxysql.sidecarResources.limits.cpu
Value string
Example 600m
Description Kubernetes CPU limits for the sidecar ProxySQL containers

Key proxysql.priorityClassName
Value string
Example high-priority
Description The Kubernetes Pod Priority class for ProxySQL

Key proxysql.schedulerName
Value string
Example default-scheduler
Description The Kubernetes Scheduler

Key proxysql.nodeSelector
Value label
Example disktype: ssd
Description Kubernetes nodeSelector

Key proxysql.affinity.topologyKey
Continued on next page

12.2. ProxySQL Section 36

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Table 12.2 – continued from previous page
Value string
Example kubernetes.io/hostname
Description The Operator topology key node anti-affinity constraint

Key proxysql.affinity.advanced
Value subdoc
Example
Description If available it makes a topologyKey node affinity constraint to be ignored

Key proxysql.tolerations
Value subdoc
Example node.alpha.kubernetes.io/unreachable
Description Kubernetes Pod tolerations

Key proxysql.volumeSpec.emptyDir
Value string
Example {}
Description The Kubernetes emptyDir volume The directory created on a node and accessible to the PXC Pod

containers

Key proxysql.volumeSpec.hostPath.path
Value string
Example /data
Description Kubernetes hostPath The volume that mounts a directory from the host node’s filesystem into

your Pod. The path property is required

Key proxysql.volumeSpec.hostPath.type
Value string
Example Directory
Description The Kubernetes hostPath. An optional property for the hostPath

Key proxysql.volumeSpec.persistentVolumeClaim.storageClassName
Value string
Example standard
Description Set the Kubernetes storage class to use with the PXC PersistentVolumeClaim

Key proxysql.volumeSpec.persistentVolumeClaim.accessModes
Value array
Example [ReadWriteOnce]
Description The Kubernetes PersistentVolumeClaim access modes for the Percona XtraDB cluster

Key proxysql.volumeSpec.resources.requests.storage
Value string
Example 6Gi
Description The Kubernetes PersistentVolumeClaim size for the Percona XtraDB cluster

Key proxysql.podDisruptionBudget.maxUnavailable
Value int
Example 1

Continued on next page

12.2. ProxySQL Section 37

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Table 12.2 – continued from previous page
Description The Kubernetes podDisruptionBudget specifies the number of Pods from the set unavailable after

the eviction

Key proxysql.podDisruptionBudget.minAvailable
Value int
Example 0
Description The Kubernetes podDisruptionBudget Pods that must be available after an eviction

Key proxysql.gracePeriod
Value int
Example 30
Description The Kubernetes grace period when terminating a Pod

PMM Section

The pmm section in the deploy/cr.yaml file contains configuration options for Percona Monitoring and Management.

Key pmm.enabled
Value boolean
Example false
Description Enables or disables monitoring Percona XtraDB cluster with PMM

Key pmm.image
Value string
Example perconalab/pmm-client:1.17.1
Description PMM client Docker image to use

Key pmm.serverHost
Value string
Example monitoring-service
Description Address of the PMM Server to collect data from the cluster

Key pmm.serverUser
Value string
Example pmm
Description The PMM Serve_User. The PMM Server password should be configured using Secrets

Key pmm.resources.requests.memory
Value string
Example 200M
Description The Kubernetes memory requests for a PMM container

Key pmm.resources.requests.cpu
Value string
Example 500m
Description Kubernetes CPU requests for a PMM container

12.3. PMM Section 38

https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://www.percona.com/doc/percona-xtradb-cluster/5.7/manual/monitoring.html
https://www.percona.com/doc/percona-monitoring-and-management/glossary.option.html
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Backup Section

The backup section in the deploy/cr.yaml file contains the following configuration options for the regular Percona
XtraDB Cluster backups.

Key backup.image
Value string
Example percona/percona-xtradb-cluster-operator:1.4.0-backup
Description The Percona XtraDB cluster Docker image to use for the backup

Key backup.imagePullSecrets.name
Value string
Example private-registry-credentials
Description The Kubernetes imagePullSecrets for the specified image

Key backup.storages.<storage-name>.type
Value string
Example s3
Description The cloud storage type used for backups. Only s3 and filesystem types are supported

Key backup.storages.<storage-name>.s3.credentialsSecret
Value string
Example my-cluster-name-backup-s3
Description The Kubernetes secret for backups. It should contain AWS_ACCESS_KEY_ID and

AWS_SECRET_ACCESS_KEY keys.

Key backup.storages.<storage-name>.s3.bucket
Value string
Example
Description The Amazon S3 bucket name for backups

Key backup.storages.s3.<storage-name>.region
Value string
Example us-east-1
Description The AWS region to use. Please note this option is mandatory for Amazon and all S3-compatible

storages

Key backup.storages.s3.<storage-name>.endpointUrl
Value string
Example
Description The endpoint URL of the S3-compatible storage to be used (not needed for the original Amazon

S3 cloud)

Key backup.storages.<storage-name>.persistentVolumeClaim.type
Value string
Example filesystem
Description The persistent volume claim storage type

Key backup.storages.<storage-name>.persistentVolumeClaim.storageClassName
Value string
Example standard

Continued on next page

12.4. Backup Section 39

https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Table 12.3 – continued from previous page
Description Set the Kubernetes Storage Class to use with the PXC backups PersistentVolumeClaims for the

filesystem storage type

Key backup.storages.<storage-name>.persistentVolumeClaim.accessModes
Value array
Example [ReadWriteOne]
Description The Kubernetes PersistentVolume access modes

Key backup.storages.<storage-name>.persistentVolumeClaim.storage
Value string
Example 6Gi
Description Storage size for the PersistentVolume

Key backup.storages.<storage-name>.annotations
Value label
Example iam.amazonaws.com/role: role-arn
Description The Kubernetes annotations

Key backup.storages.<storage-name>.labels
Value label
Example rack: rack-22
Description Labels are key-value pairs attached to objects

Key backup.storages.<storage-name>.resources.requests.memory
Value string
Example 1G
Description The Kubernetes memory requests for a PXC container

Key backup.storages.<storage-name>.resources.requests.cpu
Value string
Example 600m
Description Kubernetes CPU requests for a PXC container

Key backup.storages.<storage-name>.resources.limits.memory
Value string
Example 1G
Description Kubernetes memory limits for a PXC container

Key backup.storages.<storage-name>.nodeSelector
Value label
Example disktype: ssd
Description Kubernetes nodeSelector

Key backup.storages.<storage-name>.affinity.nodeAffinity
Value subdoc
Example
Description The Operator node affinity constraint

Key backup.storages.<storage-name>.tolerations
Value subdoc

Continued on next page

12.4. Backup Section 40

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Table 12.3 – continued from previous page
Example backupWorker
Description Kubernetes Pod tolerations

Key backup.storages.<storage-name>.priorityClassName
Value string
Example high-priority
Description The Kubernetes Pod priority class

Key backup.storages.<storage-name>.schedulerName
Value string
Example default-scheduler
Description The Kubernetes Scheduler

Key backup.storages.<storage-name>.containerSecurityContext
Value subdoc
Example privileged: true
Description A custom Kubernetes Security Context for a Container to be used instead of the default one

Key backup.storages.<storage-name>.podSecurityContext
Value subdoc
Example fsGroup: 1001

supplementalGroups: [1001, 1002, 1003]
Description A custom Kubernetes Security Context for a Pod to be used instead of the default one

Key backup.schedule.name
Value string
Example sat-night-backup
Description The backup name

Key backup.schedule.schedule
Value string
Example 0 0 * * 6
Description Scheduled time to make a backup specified in the crontab format

Key backup.schedule.keep
Value int
Example 3
Description Number of stored backups

Key backup.schedule.storageName
Value string
Example s3-us-west
Description The name of the storage for the backups configured in the storages or fs-pvc subsection

12.4. Backup Section 41

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://en.wikipedia.org/wiki/Cron

CHAPTER

THIRTEEN

PROVIDING BACKUPS

Percona XtraDB Cluster Operator allows doing cluster backup in two ways. Scheduled backups are configured in the
deploy/cr.yaml file to be executed automatically in proper time. On-demand backups can be done manually at any
moment.

Backup images are usually stored on Amazon S3 or S3-compatible storage (storing backups on private storage is also
possible, but they are described separately).

Making scheduled backups

Since backups are stored separately on the Amazon S3, a secret with AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY should be present on the Kubernetes cluster. The secrets file with these keys should
be created: for example deploy/backup-s3.yaml file with the following contents:

apiVersion: v1
kind: Secret
metadata:

name: my-cluster-name-backup-s3
type: Opaque
data:

AWS_ACCESS_KEY_ID: UkVQTEFDRS1XSVRILUFXUy1BQ0NFU1MtS0VZ
AWS_SECRET_ACCESS_KEY: UkVQTEFDRS1XSVRILUFXUy1TRUNSRVQtS0VZ

The name value is the Kubernetes secret name which will be used further, and AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY are the keys to access S3 storage (and obviously they should contain proper values
to make this access possible). To have effect secrets file should be applied with the appropriate command to create the
secret object, e.g. kubectl apply -f deploy/backup-s3.yaml (for Kubernetes).

Backups schedule is defined in the backup section of the deploy/cr.yaml file. This section contains following subsec-
tions: * storages subsection contains data needed to access the S3-compatible cloud to store backups. * schedule
subsection allows to actually schedule backups (the schedule is specified in crontab format).

Here is an example which uses Amazon S3 storage for backups:

...
backup:

enabled: true
version: 0.3.0
...
storages:
s3-us-west:

type: s3
s3:

42

https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

bucket: S3-BACKUP-BUCKET-NAME-HERE
region: us-west-2
credentialsSecret: my-cluster-name-backup-s3

...
schedule:
- name: "sat-night-backup"

schedule: "0 0 * * 6"
keep: 3
storageName: s3-us-west

...

if you use some S3-compatible storage instead of the original Amazon S3, the endpointURL is needed in the s3
subsection which points to the actual cloud used for backups and is specific to the cloud provider. For example, using
Google Cloud involves the following endpointUrl.

The options within these three subsections are further explained in the Operator Options.

The only option which should be mentioned separately is credentialsSecret which is a Kubernetes se-
cret for backups. Value of this key should be the same as the name used to create the secret object
(my-cluster-name-backup-s3 in the last example).

The schedule is specified in crontab format as explained in the Operator Options.

Making on-demand backup

To make on-demand backup, user should use YAML file with correct names for the backup and the PXC Cluster, and
correct PVC settings. The example of such file is deploy/backup/backup.yaml.

When the backup config file is ready, actual backup command is executed:

kubectl apply -f deploy/backup/backup.yaml

Note: Storing backup settings in a separate file can be replaced by passing its content to the ‘‘kubectl apply‘‘ command
as follows:

cat <<EOF | kubectl apply -f-
apiVersion: pxc.percona.com/v1
kind: PerconaXtraDBClusterBackup
metadata:

name: backup1
spec:

pxcCluster: cluster1
storageName: fs-pvc

EOF

Restore the cluster from a previously saved backup

Following steps are needed to restore a previously saved backup:

1. First of all make sure that the cluster is running.

2. Now find out correct names for the backup and the cluster. Available backups can be listed with the following
command:

13.2. Making on-demand backup 43

https://docs.min.io/docs/aws-cli-with-minio.html
https://cloud.google.com
https://storage.googleapis.com
https://www.percona.com/doc/kubernetes-operator-for-pxc/operator.html
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://percona.github.io/percona-xtradb-cluster-operator/configure/operator
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/backup/backup.yaml

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

kubectl get pxc-backup

And the following command will list available clusters:

kubectl get pxc

3. When both correct names are known, the actual restoration process can be started as follows:

kubectl apply -f deploy/backup/restore.yaml

Note: Storing backup settings in a separate file can be replaced by passing its content to the ‘‘kubectl apply‘‘ command
as follows:

cat <<EOF | kubectl apply -f-
apiVersion: "pxc.percona.com/v1"
kind: "PerconaXtraDBClusterRestore"
metadata:
name: "restore1"

spec:
pxcCluster: "cluster1"
backupName: "backup1"

EOF

Delete the unneeded backup

Deleting a previously saved backup requires not more than the backup name. This name can be taken from the list of
available backups returned by the following command:

kubectl get pxc-backup

When the name is known, backup can be deleted as follows:

kubectl delete pxc-backup/<backup-name>

Copy backup to a local machine

Make a local copy of a previously saved backup requires not more than the backup name. This name can be taken
from the list of available backups returned by the following command:

kubectl get pxc-backup

When the name is known, backup can be downloaded to the local machine as follows:

./deploy/backup/copy-backup.sh <backup-name> path/to/dir

For example, this downloaded backup can be restored to the local installation of Percona Server:

service mysqld stop
rm -rf /var/lib/mysql/*
cat xtrabackup.stream | xbstream -x -C /var/lib/mysql
xtrabackup --prepare --target-dir=/var/lib/mysql
chown -R mysql:mysql /var/lib/mysql
service mysqld start

13.4. Delete the unneeded backup 44

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

13.5. Copy backup to a local machine 45

CHAPTER

FOURTEEN

LOCAL STORAGE SUPPORT FOR THE PERCONA XTRADB
CLUSTER OPERATOR

Among the wide rage of volume types, supported by Kubernetes, there are two which allow Pod containers to access
part of the local filesystem on the node. Two such options are emptyDir and hostPath volumes.

emptyDir

The name of this option is self-explanatory. When Pod having an emptyDir volume is assigned to a Node, a directory
with the specified name is created on this node and exists until this Pod is removed from the node. When the Pod
have been deleted, the directory is deleted too with all its content. All containers in the Pod which have mounted this
volume will gain read and write access to the correspondent directory.

The emptyDir options in the deploy/cr.yaml file can be used to turn the emptyDir volume on by setting the directory
name.

hostPath

A hostPath volume mounts some existing file or directory from the node’s filesystem into the Pod.

The volumeSpec.hostPath subsection in the deploy/cr.yaml file may include path and type keys to set the
node’s filesystem object path and to specify whether it is a file, a directory, or something else (e.g. a socket):

volumeSpec:
hostPath:
path: /data
type: Directory

Please note, that hostPath directory is not created automatically! Is should be created manually and should have
following correct attributives: 1. access permissions 2. ownership 3. SELinux security context

hostPath is useful when you are able to perform manual actions during the first run and have strong need in
improved disk performance. Also, please consider using tolerations to avoid cluster migration to different hardware in
case of a reboot or a hardware failure.

More details can be found in the official hostPath Kubernetes documentation.

46

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath

CHAPTER

FIFTEEN

BINDING PERCONA XTRADB CLUSTER COMPONENTS TO
SPECIFIC KUBERNETES/OPENSHIFT NODES

The operator does good job automatically assigning new Pods to nodes with sufficient to achieve balanced distribution
across the cluster. Still there are situations when it worth to ensure that pods will land on specific nodes: for example,
to get speed advantages of the SSD equipped machine, or to reduce costs choosing nodes in a same availability zone.

Both pxc and proxysql sections of the deploy/cr.yaml file contain keys which can be used to do this, depending on
what is the best for a particular situation.

Node selector

nodeSelector contains one or more key-value pairs. If the node is not labeled with each key-value pair from the
Pod’s nodeSelector, the Pod will not be able to land on it.

The following example binds the Pod to any node having a self-explanatory disktype: ssd label:

nodeSelector:
disktype: ssd

Affinity and anti-affinity

Affinity makes Pod eligible (or not eligible - so called “anti-affinity”) to be scheduled on the node which already has
Pods with specific labels. Particularly this approach is good to to reduce costs making sure several Pods with intensive
data exchange will occupy the same availability zone or even the same node - or, on the contrary, to make them land
on different nodes or even different availability zones for the high availability and balancing purposes.

Percona XtraDB Cluster Operator provides two approaches for doing this:

• simple way to set anti-affinity for Pods, built-in into the Operator,

• more advanced approach based on using standard Kubernetes constraints.

Simple approach - use topologyKey of the Percona XtraDB Cluster Operator

Percona XtraDB Cluster Operator provides a topologyKey option, which may have one of the following values:

• kubernetes.io/hostname - Pods will avoid residing within the same host,

• failure-domain.beta.kubernetes.io/zone - Pods will avoid residing within the same zone,

• failure-domain.beta.kubernetes.io/region - Pods will avoid residing within the same region,

47

https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

• none - no constraints are applied.

The following example forces Percona XtraDB Cluster Pods to avoid occupying the same node:

affinity:
topologyKey: "kubernetes.io/hostname"

Advanced approach - use standard Kubernetes constraints

Previous way can be used with no special knowledge of the Kubernetes way of assigning Pods to specific nodes. Still
in some cases more complex tuning may be needed. In this case advanced option placed in the deploy/cr.yaml file
turns off the effect of the topologyKey and allows to use standard Kubernetes affinity constraints of any complexity:

affinity:
advanced:

podAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: security
operator: In
values:
- S1

topologyKey: failure-domain.beta.kubernetes.io/zone
podAntiAffinity:

preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:

labelSelector:
matchExpressions:
- key: security
operator: In
values:
- S2

topologyKey: kubernetes.io/hostname
nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/e2e-az-name
operator: In
values:
- e2e-az1
- e2e-az2

preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:

matchExpressions:
- key: another-node-label-key
operator: In
values:
- another-node-label-value

See explanation of the advanced affinity options in Kubernetes documentation.

15.2. Affinity and anti-affinity 48

https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is expressed as a
keywith and operator, which is either exists or equal (the latter variant also requires a value the key is equal
to). Moreover, toleration should have a specified effect, which may be a self-explanatory NoSchedule, less strict
PreferNoSchedule, or NoExecute. The last variant means that if a taint with NoExecute is assigned to node,
then any Pod not tolerating this taint will be removed from the node, immediately or after the tolerationSeconds
interval, like in the following example:

tolerations:
- key: "node.alpha.kubernetes.io/unreachable"

operator: "Exists"
effect: "NoExecute"
tolerationSeconds: 6000

The Kubernetes Taints and Toleratins contains more examples on this topic.

Priority Classes

Pods may belong to some priority classes. This allows scheduler to distinguish more and less important Pods to resolve
the situation when some higher priority Pod cannot be scheduled without evicting a lower priority one. This can be
done adding one or more PriorityClasses in your Kubernetes cluster, and specifying the PriorityClassName in
the deploy/cr.yaml file:

priorityClassName: high-priority

See the Kubernetes Pods Priority and Preemption documentation to find out how to define and use priority classes in
your cluster.

Pod Disruption Budgets

Creating the Pod Disruption Budget is the Kubernetes style to limits the number of Pods of an application that can
go down simultaneously due to such voluntary disruptions as cluster administrator’s actions during the update of
deployments or nodes, etc. By such a way Distribution Budgets allow large applications to retain their high availability
while maintenance and other administrative activities.

We recommend to apply Pod Disruption Budgets manually to avoid situation when Kubernetes stopped all your
database Pods. See the official Kubernetes documentation for details.

15.3. Tolerations 49

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://github.com/percona/percona-xtradb-cluster-operator/blob/master/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/

CHAPTER

SIXTEEN

CHANGING MYSQL OPTIONS

You may require a configuration change for your application. MySQL allows the option to configure the database with
a configuration file. You can pass the MySQL options from the my.cnf configuration file to the cluster in one of the
following ways:

• Edit the CR.yaml file

• Use a ConfigMap

Edit the CR.yaml

You can add options from the my.cnf by editing the configuration section of the deploy/cr.yaml.

spec:
secretsName: my-cluster-secrets
pxc:
...

configuration: |
[mysqld]
wsrep_debug=ON
[sst]
wsrep_debug=ON

See the Custom Resource options, PXC section for more details

Use a ConfigMap

You can use a configmap and the cluster restart to reset configuration options. A configmap allows Kubernetes to pass
or update configuration data inside a containerized application.

Use the kubectl command to create the configmap from external resources, for more information see Configure a
Pod to use a ConfigMap.

For example, let’s suppose that your application requires more connections. To increase your max_connections
setting in MySQL, you define a my.cnf configuration file with the following setting:

[mysqld]
...
max_connections=250

You can create a configmap from the my.cnf file with the kubectl create configmap command.

50

https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

You should use the combination of the cluster name with the -pxc suffix as the naming convention for the configmap.
To find the cluster name, you can use the following command:

kubectl get pxc

The syntax for kubectl create configmap command is:

kubectl create configmap <cluster-name>-pxc <resource-type=resource-name>

The following example defines cluster1-pxc as the configmap name and the my-cnf file as the data source:

kubectl create configmap cluster1-pxc --from-file=my.cnf

To view the created configmap, use the following command:

kubectl describe configmaps cluster1-pxc

Make changed options visible to the Percona XtraDB Cluster

Do not forget to restart Percona XtraDB Cluster to ensure the cluster has updated the configuration (see details on how
to connect in the Install Percona XtraDB Cluster on Kubernetes page).

Auto-tuning MySQL options

Few configuration options for MySQL can be calculated and set by the Operator automatically based on the available
Pod resources (memory and CPU) if these options are not specified by user (either in CR.yaml or in ConfigMap).

Options which can be set automatically are the following ones:

• innodb_buffer_pool_size

• max_connections

If PXC Pod limits are defined, then limits values are used to calculate these options. If PXC Pod limits are not defined,
Operator looks for PXC Pod requests as the basis for calculations. if neither PXC Pod limits nor PXC Pod requests
are defined, auto-tuning is not done.

16.3. Make changed options visible to the Percona XtraDB Cluster 51

CHAPTER

SEVENTEEN

CONFIGURING PROXYSQL

You can use ProxySQL admin interface to configure its settings.

Configuring ProxySQL in this way means connecting to it using the MySQL protocol, and two things are needed to
do it:

• the ProxySQL Pod name

• the ProxySQL admin password

You can find out ProxySQL Pod name with the kubectl get pods command, which will have the following
output:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
cluster1-pxc-node-0 1/1 Running 0 5m
cluster1-pxc-node-1 1/1 Running 0 4m
cluster1-pxc-node-2 1/1 Running 0 2m
cluster1-pxc-proxysql-0 1/1 Running 0 5m
percona-xtradb-cluster-operator-dc67778fd-qtspz 1/1 Running 0 6m

The next command will print you the needed admin password:

kubectl get secrets $(kubectl get pxc -o jsonpath='{.items[].spec.secretsName}') -o
→˓template='{{ .data.proxyadmin | base64decode }}'

When both Pod name and admin password are known, connect to the ProxySQL as follows, substituting
cluster1-pxc-proxysql-0 with the actual Pod name and admin_password with the actual password:

kubectl exec -it cluster1-pxc-proxysql-0 -- mysql -h127.0.0.1 -P6032 -uproxyadmin -
→˓padmin_password

.

52

https://www.percona.com/blog/2017/06/07/proxysql-admin-interface-not-typical-mysql-server/

CHAPTER

EIGHTEEN

TRANSPORT LAYER SECURITY (TLS)

The Percona Kubernetes Operator for PXC uses Transport Layer Security (TLS) cryptographic protocol for the fol-
lowing types of communication:

• Internal - communication between PXC instances in the cluster

• External - communication between the client application and ProxySQL

The internal certificate is also used as an authorization method.

TLS security can be configured in several ways. By default, the Operator generates certificates automatically if there
are no certificate secrets available. Other options are the following ones:

• The Operator can use a specifically installed cert-manager for the automatic certificates generation,

• Certificates can be generated manually.

You can also use pre-generated certificates available in the deploy/ssl-secrets.yaml file for test purposes,
but we strongly recommend

avoiding their usage on any production system!

The following subsections explain how to configure TLS security with the Operator yourself, as well as how to tem-
porarily disable it if needed.

• Install and use the cert-manager

– About the cert-manager

– Installation of the cert-manager

• Generate certificates manually

• Run PXC without TLS

Install and use the cert-manager

About the cert-manager

A cert-manager is a Kubernetes certificate management controller which widely used to automate the management
and issuance of TLS certificates. It is community-driven, and open source.

When you have already installed cert-manager and deploy the operator, the operator requests a certificate from the
cert-manager. The cert-manager acts as a self-signed issuer and generates certificates. The Percona Operator self-

53

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

signed issuer is local to the operator namespace. This self-signed issuer is created because PXC requires all certificates
are issued by the same CA.

The creation of the self-signed issuer allows you to deploy and use the Percona Operator without creating a clusteris-
suer separately.

Installation of the cert-manager

The steps to install the cert-manager are the following:

• Create a namespace

• Disable resource validations on the cert-manager namespace

• Install the cert-manager.

The following commands perform all the needed actions:

kubectl create namespace cert-manager
kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true
kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.7/
→˓deploy/manifests/cert-manager.yaml

After the installation, you can verify the cert-manager by running the following command:

kubectl get pods -n cert-manager

The result should display the cert-manager and webhook active and running.

Generate certificates manually

To generate certificates manually, follow these steps:

1. Provision a Certificate Authority (CA) to generate TLS certificates

2. Generate a CA key and certificate file with the server details

3. Create the server TLS certificates using the CA keys, certs, and server details

The set of commands generate certificates with the following attributes:

• Server-pem - Certificate

• Server-key.pem - the private key

• ca.pem - Certificate Authority

You should generate certificates twice: one set is for external communications, and another set is for internal ones. A
secret created for the external use must be added to cr.yaml/spec/secretsName. A certificate generated for
internal communications must be added to the cr.yaml/spec/sslInternalSecretName.

cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca
{

"CN": "Root CA",
"key": {
"algo": "rsa",
"size": 2048

}
}

18.2. Generate certificates manually 54

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

EOF

cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem - | cfssljson -bare server
{

"hosts": [
"${CLUSTER_NAME}-proxysql",
"*.${CLUSTER_NAME}-proxysql-unready",
"*.${CLUSTER_NAME}-pxc"

],
"CN": "${CLUSTER_NAME}-pxc",
"key": {
"algo": "rsa",
"size": 2048

}
}
EOF

kubectl create secret generic my-cluster-ssl --from-file=tls.crt=server.pem --
from-file=tls.key=server-key.pem --from-file=ca.crt=ca.pem --
type=kubernetes.io/tls

Run PXC without TLS

Omitting TLS is also possible, but we recommend that you run your cluster with the TLS protocol enabled.

To disable TLS protocol (e.g. for demonstration purposes) edit the cr.yaml/spec/
allowUnstafeConfigurations setting to true and make sure that there are no certificate secrets available.

18.3. Run PXC without TLS 55

CHAPTER

NINETEEN

DATA-AT-REST ENCRYPTION

Full data-at-rest encryption in Percona XtraDB Cluster is supported by the Operator since version 1.4.0.

Note: Data at rest means inactive data stored as files, database records, etc.

To implement these features, the Operator uses keyring_vault plugin, which ships with Percona XtraDB Cluster,
and utilizes HashiCorp Vault storage for encryption keys.

• Installing Vault

• Configuring Vault

• Using the encryption

Installing Vault

The following steps will deploy Vault on Kubernetes with the Helm 3 package manager. Other Vault installation
methods should also work, so the instruction placed here is not obligatory and is for illustration purposes.

1. Clone the official HashiCorp Vault Helm chart from GitHub:

$ git clone -b v0.4.0 https://github.com/hashicorp/vault-helm.git
$ cd vault-helm

2. Now use Helm to do the installation:

$ helm install vault-service ./

3. After the installation, Vauld should be first initialized and then unsealed. Initializing Vault is done with the
following commands:

$ kubectl exec -it pod/vault-service-0 -- vault operator init -key-shares=1 -key-
→˓threshold=1 -format=json > /tmp/vault-init
$ unsealKey=$(jq -r ".unseal_keys_b64[]" < /tmp/vault-init)

To unseal Vault, execute the following command for each Pod of Vault running:

$ kubectl exec -it pod/vault-service-0 -- vault operator unseal "$unsealKey"

56

https://www.percona.com/doc/percona-xtradb-cluster/LATEST/management/data_at_rest_encryption.html
https://en.wikipedia.org/wiki/Data_at_rest
https://www.vaultproject.io/
https://helm.sh/

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Configuring Vault

1. First, you should enable secrets within Vault. Get the Vault root token:

$ cat /tmp/vault-init | jq -r ".root_token"

The output will be like follows:

s.VgQvaXl8xGFO1RUxAPbPbsfN

Now login to Vault with this token and enable the “pxc-secret” secrets path:

$ kubectl exec -it vault-service-0 -- /bin/sh
$ vault login s.VgQvaXl8xGFO1RUxAPbPbsfN
$ vault secrets enable --version=1 -path=pxc-secret kv

Note: You can also enable audit, which is not mandatory, but useful:

$ vault audit enable file file_path=/vault/vault-audit.log

2. To enable Vault secret within Kubernetes, create and apply the YAML file, as described further.

2.1. To access the Vault server via HTTP, follow the next YAML file example:

apiVersion: v1
kind: Secret
metadata:

name: some-name-vault
type: Opaque
stringData:

keyring_vault.conf: |-
token = s.VgQvaXl8xGFO1RUxAPbPbsfN
vault_url = vault-service.vault-service.svc.cluster.local
secret_mount_point = pxc-secret

Note: the name key in the above file should be equal to the spec.vaultSecretName key from
the deploy/cr.yaml configuration file.

2.2. To turn on TLS and access the Vault server via HTTPS, you should do two more things:

• add one more item to the secret: the contents of the ca.cert file with your certificate,

• store the path to this file in the vault_ca key.

apiVersion: v1
kind: Secret
metadata:

name: some-name-vault
type: Opaque
stringData:

keyring_vault.conf: |-
token = = s.VgQvaXl8xGFO1RUxAPbPbsfN
vault_url = https://vault-service.vault-service.svc.cluster.local
secret_mount_point = pxc-secret

19.2. Configuring Vault 57

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

vault_ca = /etc/mysql/vault-keyring-secret/ca.cert
ca.cert: |-
-----BEGIN CERTIFICATE-----
MIIEczCCA1ugAwIBAgIBADANBgkqhkiG9w0BAQQFAD..AkGA1UEBhMCR0Ix
EzARBgNVBAgTClNvbWUtU3RhdGUxFDASBgNVBAoTC0..0EgTHRkMTcwNQYD
7vQMfXdGsRrXNGRGnX+vWDZ3/zWI0joDtCkNnqEpVn..HoX
-----END CERTIFICATE-----

Note: the name key in the above file should be equal to the spec.vaultSecretName key from
the deploy/cr.yaml configuration file.

Note: For techincal reasons the vault_ca key should either exist or not exist in the YAML file;
commented option like #vault_ca = ... is not acceptable.

More details on how to install and configure Vault can be found in the official documentation.

Using the encryption

If using Percona XtraDB Cluster 5.7, you should turn encryption on explicitly when you create a table or a tablespace.
This can be done by adding the ENCRYPTION='Y' part to your SQL statement, like in the following example:

CREATE TABLE t1 (c1 INT, PRIMARY KEY pk(c1)) ENCRYPTION='Y';
CREATE TABLESPACE foo ADD DATAFILE 'foo.ibd' ENCRYPTION='Y';

Note: See more details on encryption in Percona XtraDB Cluster 5.7 here.

If using Percona XtraDB Cluster 8.0, the encryption is turned on by default. The following table presents the default
values of the correspondent my.cnf configuration options:

Option Default value
early-plugin-load keyring_vault.so
keyring_vault_config /etc/mysql/vault-keyring-secret/

keyring_vault.conf
default_table_encryption ON
table_encryption_privilege_check ON
innodb_undo_log_encrypt ON
innodb_redo_log_encrypt ON
binlog_encryption ON
binlog_rotate_encryption_master_key_at_startupON
innodb_temp_tablespace_encrypt ON
innodb_parallel_dblwr_encrypt ON
innodb_encrypt_online_alter_logs ON
encrypt_tmp_files ON

19.3. Using the encryption 58

https://learn.hashicorp.com/vault?track=getting-started-k8s#getting-started-k8s
https://www.percona.com/doc/percona-xtradb-cluster/5.7/management/data_at_rest_encryption.html
https://www.percona.com/doc/percona-server/LATEST/security/data-at-rest-encryption.html

CHAPTER

TWENTY

PAUSE/RESUME PERCONA XTRADB CLUSTER

There may be external situations when it is needed to shutdown the PXC cluster for a while and then start it back up
(some works related to the maintenance of the enterprise infrastructure, etc.).

The deploy/cr.yaml file contains a special spec.pause key for this. Setting it to true gracefully stops the
cluster:

spec:
.......
pause: true

To start the cluster after it was shut down just revert the spec.pause key to false.

59

CHAPTER

TWENTYONE

CRASH RECOVERY

What does the full cluster crash mean?

A full cluster crash is a situation when all database instances where shut down in random order. Being rebooted after
such situation, Pod is continuously restarting, and generates the following errors in the log:

It may not be safe to bootstrap the cluster from this node. It was not the last one
→˓to leave the cluster and may not contain all the updates.
To force cluster bootstrap with this node, edit the grastate.dat file manually and
→˓set safe_to_bootstrap to 1

Note: To avoid this, shutdown your cluster correctly as it is written in Pause/resume Percona XtraDB Cluster.

The Percona Operator for Percona XtraDB Cluster provides two ways of recovery after a full cluster crash.

• The automated Bootstrap Crash Recovery method is the simplest one, but it may cause loss of several recent
transactions.

• The manual Object Surgery Crash Recovery method includes a lot of operations, but it allows to restore all the
data.

Bootstrap Crash Recovery method

In this case recovery is done automatically. The recovery is triggered by the pxc.forceUnsafeBootstrap
option set to true in the deploy/cr.yaml file:

pxc:
...
forceUnsafeBootstrap: true

Applying this option forces the cluster to start. However, there may exist data inconsistency in the cluster, and several
last transactions may be lost. If such data loss is undesirable, experienced users may choose the more advanced manual
method described in the next chapter.

60

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Object Surgery Crash Recovery method

Warning: This method is intended for advanced users only!

This method involves the following steps: * swap the original PXC image with the debug image, which

does not reboot after the crash, and force all Pods to run it,

• find the Pod with the most recent PXC data, run recovery on it, start mysqld, and allow the cluster to be
restarted,

• revert all temporary substitutions.

Let’s assume that a full crash did occur for the cluster named cluster1, which is based on three PXC Pods.

Note: The following commands are written for PXC 8.0. The same steps are also for PXC 5.7 unless specifically
indicated otherwise.

1. Change the normal PXC image inside the cluster object to the debug image:

$ kubectl patch pxc cluster1 --type="merge" -p '{"spec":{"pxc":{"image":"percona/
→˓percona-xtradb-cluster-operator:1.4.0-pxc8.0-debug"}}}'

Note: For PXC 5.7 this command should be as follows:

$ kubectl patch pxc cluster1 --type="merge" -p '{"spec":{"pxc":{"image":"percona/
→˓percona-xtradb-cluster-operator:1.4.0-pxc5.7-debug"}}}'

2. Restart all Pods:

$ $ for i in $(seq 0 $(($(kubectl get pxc cluster1 -o jsonpath='{.spec.pxc.
→˓size}')-1))); do kubectl delete pod cluster1-pxc-$i --force --grace-
→˓period=0; done

3. Wait until the Pod 0 is ready, and execute the following code (it is required for the Pod liveness check):

$ for i in $(seq 0 $(($(kubectl get pxc cluster1 -o jsonpath='{.spec.pxc.size}')-
→˓1))); do until [[$(kubectl get pod cluster1-pxc-$i -o jsonpath='{.status.phase}
→˓') == 'Running']]; do sleep 10; done; kubectl exec cluster1-pxc-$i -- touch /
→˓var/lib/mysql/sst_in_progress; done

4. Wait for all PXC Pods to start, then find the PXC instance with the most recent data - i.e. the one with the
highest sequence number (seqno):

$ for i in $(seq 0 $(($(kubectl get pxc cluster1 -o jsonpath='{.spec.pxc.size}')-
→˓1))); do echo "###############cluster1-pxc-$i##############"; kubectl exec
→˓cluster1-pxc-$i -- cat /var/lib/mysql/grastate.dat; done

The output of this command should be similar to the following one:

###############cluster1-pxc-0##############
GALERA saved state
version: 2.1

21.3. Object Surgery Crash Recovery method 61

https://www.percona.com/blog/2017/12/14/sequence-numbers-seqno-percona-xtradb-cluster/

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

uuid: 7e037079-6517-11ea-a558-8e77af893c93
seqno: 18
safe_to_bootstrap: 0
###############cluster1-pxc-1##############
GALERA saved state
version: 2.1
uuid: 7e037079-6517-11ea-a558-8e77af893c93
seqno: 18
safe_to_bootstrap: 0
###############cluster1-pxc-2##############
GALERA saved state
version: 2.1
uuid: 7e037079-6517-11ea-a558-8e77af893c93
seqno: 19
safe_to_bootstrap: 0

Now find the Pod with the largest seqno (it is cluster1-pxc-2 in the above example).

5. Now execute the following commands in a separate shell to start this instance:

$ kubectl exec cluster1-pxc-2 -- mysqld --wsrep_recover
$ kubectl exec cluster1-pxc-2 -- sed -i 's/safe_to_bootstrap: 0/safe_to_
→˓bootstrap: 1/g' /var/lib/mysql/grastate.dat
$ kubectl exec cluster1-pxc-2 -- sed -i 's/wsrep_cluster_address=.*/wsrep_cluster_
→˓address=gcomm:\/\//g' /etc/mysql/node.cnf
$ kubectl exec cluster1-pxc-2 -- mysqld

The mysqld process will initialize the database once again, and it will be available for the incoming connec-
tions.

6. Go back to the previous shell and return the original PXC image because the debug image is no longer needed:

$ kubectl patch pxc cluster1 --type="merge" -p '{"spec":{"pxc":{"image":"percona/
→˓percona-xtradb-cluster-operator:1.4.0-pxc8.0"}}}'

Note: For PXC 5.7 this command should be as follows:

$ kubectl patch pxc cluster1 --type="merge" -p '{"spec":{"pxc":{"image":"percona/
→˓percona-xtradb-cluster-operator:1.4.0-pxc5.7"}}}'

7. Restart all Pods besides the cluster1-pxc-2 Pod (the recovery donor).

$ for i in $(seq 0 $(($(kubectl get pxc cluster1 -o jsonpath='{.spec.pxc.size}')-
→˓1))); do until [[$(kubectl get pod cluster1-pxc-$i -o jsonpath='{.status.phase}
→˓') == 'Running']]; do sleep 10; done; kubectl exec cluster1-pxc-$i -- rm /var/
→˓lib/mysql/sst_in_progress; done
$ kubectl delete pods --force --grace-period=0 cluster1-pxc-0 cluster1-pxc-1

8. Wait for the successful startup of the Pods which were deleted during the previous step, and finally remove the
cluster1-pxc-2 Pod:

$ kubectl delete pods --force --grace-period=0 cluster1-pxc-2

9. After the Pod startup, the cluster is fully recovered.

21.3. Object Surgery Crash Recovery method 62

CHAPTER

TWENTYTWO

DEBUG

For the cases when Pods are failing for some reason or just show abnormal behavior, the Operator can be used with a
special debug image of the Percona XtraDB Cluster, which has the following specifics:

• it avoids restarting on fail,

• it contains additional tools useful for debugging (sudo, telnet, gdb, etc.),

• it has debug mode enabled for the logs.

Particularly, using this image is useful if the container entry point fails (mysqld crashes). In such a situation, Pod is
continuously restarting. Continuous restarts prevent to get console access to the container, and so a special approach
is needed to make fixes.

To use the debug image instead of the normal one, set the following image name for the pxc.image key in the
deploy/cr.yaml configuration file:

• percona/percona-xtradb-cluster-operator:1.4.0-pxc8.0-debug for PXC 8.0,

• percona/percona-xtradb-cluster-operator:1.4.0-pxc5.7-debug for PXC 5.7.

The Pod should be restarted to get the new image.

Note: When the Pod is continuously restarting, you may have to delete it to apply image changes.

63

Part IV

Reference

64

CHAPTER

TWENTYTHREE

PERCONA KUBERNETES OPERATOR FOR PERCONA XTRADB
CLUSTER 1.4.0 RELEASE NOTES

Percona Kubernetes Operator for Percona XtraDB Cluster 1.4.0

Date April 29, 2020

Installation Installing Percona Kubernetes Operator for Percona XtraDB Cluster

New Features

• K8SPXC-172: Full data-at-rest encryption available in PXC 8.0 is now supported by the Operator. This feature
is implemented with the help of the keyring_vault plugin which ships with PXC 8.0. By utilizing Vault we
enable our customers to follow best practices with encryption in their environment.

• K8SPXC-125: Percona XtraDB Cluster 8.0 is now supported

• K8SPXC-95: Amazon Elastic Container Service for Kubernetes (EKS) was added to the list of the officially
supported platforms

• The OpenShift Container Platform 4.3 is now supported

Improvements

• K8SPXC-262: The Operator allows setting ephemeral-storage requests and limits on all Pods

• K8SPXC-221: The Operator now updates observedGeneration status message to allow better monitoring of the
cluster rollout or backup/restore process

• K8SPXC-213: A special PXC debug image is now available. It avoids restarting on fail and contains additional
tools useful for debugging

• K8SPXC-100: The Operator now implements the crash tolerance on the one member crash. The implementation
is based on starting Pods with mysqld --wsrep_recover command if there was no graceful shutdown

Bugs Fixed

• K8SPXC-153: S3 protocol credentials were not masked in logs during the PXC backup & restore process

• K8SPXC-222: The Operator got caught in reconciliation error in case of the erroneous/absent API version in
the deploy/cr.yaml file

• K8SPXC-261: ProxySQL logs were showing the root password

65

https://www.percona.com/doc/kubernetes-operator-for-pxc/index.html#installation
https://jira.percona.com/browse/K8SPXC-172
https://www.vaultproject.io
https://jira.percona.com/browse/K8SPXC-125
https://jira.percona.com/browse/K8SPXC-95
https://jira.percona.com/browse/K8SPXC-262
https://jira.percona.com/browse/K8SPXC-221
https://jira.percona.com/browse/K8SPXC-213
https://jira.percona.com/browse/K8SPXC-100
https://jira.percona.com/browse/K8SPXC-153
https://jira.percona.com/browse/K8SPXC-222
https://jira.percona.com/browse/K8SPXC-261

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

• K8SPXC-220: The inability to update or delete existing CRD was possible because of too large records in etcd,
resulting in “request is too large” errors. Only 20 last status changes are now stored in etcd to avoid this problem.

• K8SPXC-52: The Operator produced an unclear error message in case of fail caused by the absent or malformed
pxc section in the deploy/cr.yaml file

• K8SPXC-269: The copy-backup.sh script didn’s work correctly in case of an existing secret with the
AWS_ACCESS_KEY_ID/AWS_SECRET_ACCESS_KEY credentials and prevented users from copying back-
ups (e.g. to a local machine)

• K8SPXC-263: The kubectl get pxc command was unable to show the correct ProxySQL external end-
point

• K8SPXC-219: PXC Helm charts were incompatible with the version 3 of the Helm package manager

• K8SPXC-40: The cluster was unable to reach “ready” status in case if ProxySQL.Enabled field was set to
false

• K8SPXC-34: Change of the proxysql.servicetype filed was not detected by the Operator and thus had
no effect

Percona Kubernetes Operator for Percona XtraDB Cluster 1.3.0

Percona announces the Percona Kubernetes Operator for Percona XtraDB Cluster 1.3.0 release on January 6, 2020.
This release is now the current GA release in the 1.3 series. Install the Kubernetes Operator for Percona XtraDB
Cluster by following the instructions.

The Percona Kubernetes Operator for Percona XtraDB Cluster automates the lifecycle and provides a consistent Per-
cona XtraDB Cluster instance. The Operator can be used to create a Percona XtraDB Cluster, or scale an existing
Cluster and contains the necessary Kubernetes settings.

The Operator simplifies the deployment and management of the Percona XtraDB Cluster in Kubernetes-based envi-
ronments. It extends the Kubernetes API with a new custom resource for deploying, configuring and managing the
application through the whole life cycle.

The Operator source code is available in our Github repository. All of Percona’s software is open-source and free.

New features and improvements:

• CLOUD-412: Auto-Tuning of the MySQL Parameters based on Pod memory resources was implemented in the
case of Percona XtraDB Cluster Pod limits (or at least Pod requests) specified in the cr.yaml file.

• CLOUD-411: Now the user can adjust securityContext, replacing the automatically generated securityContext
with the customized one.

• CLOUD-394: The Percona XtraDB Cluster, ProxySQL, and backup images size decrease by 40-60% was
achieved by removing unnecessary dependencies and modules to reduce the cluster deployment time.

• CLOUD-390: Helm chart for Percona Monitoring and Management (PMM) 2.0 has been provided.

• CLOUD-383: Affinity constraints and tolerations were added to the backup Pod

• CLOUD-430: Image URL in the CronJob Pod template is automatically updated when the Operator detects
changed backup image URL

Fixed bugs:

• CLOUD-462: Resource requests/limits were set not for all containers in a ProxySQL Pod

• CLOUD-437: Percona Monitoring and Management Client was taking resources definition from the Percona
XtraDB Cluster despite having much lower need in resources, particularly lower memory footprint.

23.2. Percona Kubernetes Operator for Percona XtraDB Cluster 1.3.0 66

https://jira.percona.com/browse/K8SPXC-220
https://jira.percona.com/browse/K8SPXC-52
https://jira.percona.com/browse/K8SPXC-269
https://jira.percona.com/browse/K8SPXC-263
https://jira.percona.com/browse/K8SPXC-219
https://jira.percona.com/browse/K8SPXC-40
https://jira.percona.com/browse/K8SPXC-34
https://www.percona.com/doc/kubernetes-operator-for-pxc/kubernetes.html
https://www.percona.com/doc/kubernetes-operator-for-pxc/kubernetes.html
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://github.com/percona/percona-xtradb-cluster-operator
https://jira.percona.com/browse/CLOUD-412
https://jira.percona.com/browse/CLOUD-411
https://jira.percona.com/browse/CLOUD-394
https://jira.percona.com/browse/CLOUD-390
https://jira.percona.com/browse/CLOUD-383
https://jira.percona.com/browse/CLOUD-430
https://jira.percona.com/browse/CLOUD-462
https://jira.percona.com/browse/CLOUD-437

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

• CLOUD-434: Restoring Percona XtraDB Cluster was failing on the OpenShift platform with customized secu-
rity settings

• CLOUD-399: The iputils package was added to the backup docker image to provide backup jobs with the ping
command for a better network connection handling

• CLOUD-393: The Operator generated various StatefulSets in the first reconciliation cycle and in all subsequent
reconciliation cycles, causing Kubernetes to trigger an unnecessary ProxySQL restart once during the cluster
creation.

• CLOUD-376: A long-running SST caused the liveness probe check to fail it’s grace period timeout, resulting in
an unrecoverable failure

• CLOUD-243: Using MYSQL_ROOT_PASSWORD with special characters in a ProxySQL docker image was
breaking the entrypoint initialization process

Percona XtraDB Cluster is an open source, cost-effective and robust clustering solution for businesses. It integrates
Percona Server for MySQL with the Galera replication library to produce a highly-available and scalable MySQL®
cluster complete with synchronous multi-master replication, zero data loss and automatic node provisioning using
Percona XtraBackup.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system.

Percona Kubernetes Operator for Percona XtraDB Cluster 1.2.0

Percona announces the Percona Kubernetes Operator for Percona XtraDB Cluster 1.2.0 release on September 20,
2019. This release is now the current GA release in the 1.2 series. Install the Kubernetes Operator for Percona XtraDB
Cluster by following the instructions.

The Percona Kubernetes Operator for Percona XtraDB Cluster automates the lifecycle and provides a consistent Per-
cona XtraDB Cluster instance. The Operator can be used to create a Percona XtraDB Cluster, or scale an existing
Cluster and contains the necessary Kubernetes settings.

The Operator simplifies the deployment and management of the Percona XtraDB Cluster in Kubernetes-based envi-
ronments. It extends the Kubernetes API with a new custom resource for deploying, configuring and managing the
application through the whole life cycle.

The Operator source code is available in our Github repository. All of Percona’s software is open-source and free.

New features and improvements:

• A Service Broker was implemented for the Operator, allowing a user to deploy Percona XtraDB Cluster on the
OpenShift Platform, configuring it with a standard GUI, following the Open Service Broker API.

• Now the Operator supports Percona Monitoring and Management 2, which means being able to detect and
register to PMM Server of both 1.x and 2.0 versions.

• A NodeSelector constraint is now supported for the backups, which allows using backup storage accessible
to a limited set of nodes only (contributed by Chen Min).

• The resource constraint values were refined for all containers to eliminate the possibility of an out of memory
error.

• Now it is possible to set the schedulerName option in the operator parameters. This allows using storage
which depends on a custom scheduler, or a cloud provider which optimizes scheduling to run workloads in a
cost-effective way (contributed by Smaine Kahlouch).

• A bug was fixed, which made cluster status oscillate between “initializing” and “ready” after an update.

• A 90 second startup delay which took place on freshly deployed Percona XtraDB Cluster was eliminated.

23.3. Percona Kubernetes Operator for Percona XtraDB Cluster 1.2.0 67

https://jira.percona.com/browse/CLOUD-434
https://jira.percona.com/browse/CLOUD-399
https://jira.percona.com/browse/CLOUD-393
https://jira.percona.com/browse/CLOUD-376
https://jira.percona.com/browse/CLOUD-243
http://www.percona.com/doc/percona-xtradb-cluster/
https://jira.percona.com/secure/Dashboard.jspa
https://www.percona.com/doc/kubernetes-operator-for-pxc/kubernetes.html
https://www.percona.com/doc/kubernetes-operator-for-pxc/kubernetes.html
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://github.com/percona/percona-xtradb-cluster-operator
https://www.percona.com/doc/kubernetes-operator-for-pxc/broker.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/index.html
https://github.com/chenmin1992
https://github.com/Smana

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Percona XtraDB Cluster is an open source, cost-effective and robust clustering solution for businesses. It integrates
Percona Server for MySQL with the Galera replication library to produce a highly-available and scalable MySQL®
cluster complete with synchronous multi-master replication, zero data loss and automatic node provisioning using
Percona XtraBackup.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system.

Percona Kubernetes Operator for Percona XtraDB Cluster 1.1.0

Percona announces the general availability of Percona Kubernetes Operator for Percona XtraDB Cluster 1.1.0 on July
15, 2019. This release is now the current GA release in the 1.1 series. Install the Kubernetes Operator for Percona
XtraDB Cluster by following the instructions.

The Percona Kubernetes Operator for Percona XtraDB Cluster automates the lifecycle and provides a consistent Per-
cona XtraDB Cluster instance. The Operator can be used to create a Percona XtraDB Cluster, or scale an existing
Cluster and contains the necessary Kubernetes settings.

The Operator simplifies the deployment and management of the Percona XtraDB Cluster in Kubernetes-based envi-
ronments. It extends the Kubernetes API with a new custom resource for deploying, configuring and managing the
application through the whole life cycle.

The Operator source code is available in our Github repository. All of Percona’s software is open-source and free.

New features and improvements:

• Now the Percona Kubernetes Operator allows upgrading Percona XtraDB Cluster to newer versions, either in
semi-automatic or in manual mode.

• Also, two modes are implemented for updating the Percona XtraDB Cluster my.cnf configuration file: in
automatic configuration update mode Percona XtraDB Cluster Pods are immediately re-created to populate
changed options from the Operator YAML file, while in manual mode changes are held until Percona XtraDB
Cluster Pods are re-created manually.

• A separate service account is now used by the Operator’s containers which need special privileges, and all other
Pods run on default service account with limited permissions.

• User secrets are now generated automatically if don’t exist: this feature especially helps reduce work in repeated
development environment testing and reduces the chance of accidentally pushing predefined development pass-
words to production environments.

• The Operator is now able to generate TLS certificates itself which removes the need in manual certificate gen-
eration.

• The list of officially supported platforms now includes Minikube, which provides an easy way to test the Oper-
ator locally on your own machine before deploying it on a cloud.

• Also, Google Kubernetes Engine 1.14 and OpenShift Platform 4.1 are now supported.

Percona XtraDB Cluster is an open source, cost-effective and robust clustering solution for businesses. It integrates
Percona Server for MySQL with the Galera replication library to produce a highly-available and scalable MySQL®
cluster complete with synchronous multi-master replication, zero data loss and automatic node provisioning using
Percona XtraBackup.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system.

23.4. Percona Kubernetes Operator for Percona XtraDB Cluster 1.1.0 68

http://www.percona.com/doc/percona-xtradb-cluster/
https://jira.percona.com/secure/Dashboard.jspa
https://www.percona.com/doc/kubernetes-operator-for-pxc/kubernetes.html
https://www.percona.com/doc/kubernetes-operator-for-pxc/kubernetes.html
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://github.com/percona/percona-xtradb-cluster-operator
https://www.percona.com/doc/kubernetes-operator-for-pxc/update.html
https://www.percona.com/doc/kubernetes-operator-for-pxc/users.html
https://www.percona.com/doc/kubernetes-operator-for-pxc/TLS.html
https://www.percona.com/doc/kubernetes-operator-for-pxc/minikube.html
http://www.percona.com/doc/percona-xtradb-cluster/
https://jira.percona.com/secure/Dashboard.jspa

Percona Kubernetes Operator for Percona XtraDB Cluster, Release 1.4.0

Percona Kubernetes Operator for Percona XtraDB Cluster 1.0.0

Percona announces the general availability of Percona Kubernetes Operator for Percona XtraDB Cluster 1.0.0 on May
29, 2019. This release is now the current GA release in the 1.0 series. Install the Kubernetes Operator for Percona
XtraDB Cluster by following the instructions. Please see the GA release announcement. All of Percona’s software is
open-source and free.

The Percona Kubernetes Operator for Percona XtraDB Cluster automates the lifecycle and provides a consistent Per-
cona XtraDB Cluster instance. The Operator can be used to create a Percona XtraDB Cluster, or scale an existing
Cluster and contains the necessary Kubernetes settings.

The Percona Kubernetes Operators are based on best practices for configuration and setup of the Percona XtraDB
Cluster. The Operator provides a consistent way to package, deploy, manage, and perform a backup and a restore for
a Kubernetes application. Operators deliver automation advantages in cloud-native applications.

The advantages are the following:

• Deploy a Percona XtraDB Cluster environment with no single point of failure and environment can span
multiple availability zones (AZs).

• Deployment takes about six minutes with the default configuration.

• Modify the Percona XtraDB Cluster size parameter to add or remove Percona XtraDB Cluster members

• Integrate with Percona Monitoring and Management (PMM) to seamlessly monitor your Percona XtraDB
Cluster

• Automate backups or perform on-demand backups as needed with support for performing an automatic
restore

• Supports using Cloud storage with S3-compatible APIs for backups

• Automate the recovery from failure of a single Percona XtraDB Cluster node

• TLS is enabled by default for replication and client traffic using Cert-Manager

• Access private registries to enhance security

• Supports advanced Kubernetes features such as pod disruption budgets, node selector, constraints, tolera-
tions, priority classes, and affinity/anti-affinity

• You can use either PersistentVolumeClaims or local storage with hostPath to store your database

• Customize your MySQL configuration using ConfigMap.

Installation

Installation is performed by following the documentation installation instructions for Kubernetes and OpenShift.

23.5. Percona Kubernetes Operator for Percona XtraDB Cluster 1.0.0 69

https://www.percona.com/doc/kubernetes-operator-for-pxc/kubernetes.html
https://www.percona.com/doc/kubernetes-operator-for-pxc/kubernetes.html
https://www.percona.com/blog/2019/05/29/percona-kubernetes-operators/
https://www.percona.com/doc/kubernetes-operator-for-pxc/kubernetes.html
https://www.percona.com/doc/kubernetes-operator-for-pxc/openshift.html

INDEX

Symbols
1.0.0 (release notes), 68
1.1.0 (release notes), 68
1.2.0 (release notes), 67

70

	I Requirements
	System Requirements
	Officially supported platforms
	Resource Limits
	Platform-specific limitations

	Design overview

	II Installation
	Install Percona XtraDB Cluster on Kubernetes
	Install Percona XtraDB Cluster on OpenShift
	Install Percona XtraDB Cluster on Minikube
	Scale Percona XtraDB Cluster on Kubernetes and OpenShift
	Increase the Persistent Volume Claim size

	Update Percona XtraDB Cluster Operator
	Semi-automatic update
	Manual update

	Monitoring
	Installing the PMM Server
	Installing the PMM Client

	Use docker images from a custom registry
	Percona certified images

	Deploy Percona XtraDB Cluster with Service Broker

	III Configuration
	Users
	Unprivileged users
	System Users
	Development Mode

	Custom Resource options
	PXC Section
	ProxySQL Section
	PMM Section
	Backup Section

	Providing Backups
	Making scheduled backups
	Making on-demand backup
	Restore the cluster from a previously saved backup
	Delete the unneeded backup
	Copy backup to a local machine

	Local Storage support for the Percona XtraDB Cluster Operator
	emptyDir
	hostPath

	Binding Percona XtraDB Cluster components to Specific Kubernetes/OpenShift Nodes
	Node selector
	Affinity and anti-affinity
	Simple approach - use topologyKey of the Percona XtraDB Cluster Operator
	Advanced approach - use standard Kubernetes constraints

	Tolerations
	Priority Classes
	Pod Disruption Budgets

	Changing MySQL Options
	Edit the CR.yaml
	Use a ConfigMap
	Make changed options visible to the Percona XtraDB Cluster
	Auto-tuning MySQL options

	Configuring ProxySQL
	Transport Layer Security (TLS)
	Install and use the cert-manager
	About the cert-manager
	Installation of the cert-manager

	Generate certificates manually
	Run PXC without TLS

	Data-at-Rest Encryption
	Installing Vault
	Configuring Vault
	Using the encryption

	Pause/resume Percona XtraDB Cluster
	Crash Recovery
	What does the full cluster crash mean?
	Bootstrap Crash Recovery method
	Object Surgery Crash Recovery method

	Debug

	IV Reference
	Percona Kubernetes Operator for Percona XtraDB Cluster 1.4.0 Release Notes
	Percona Kubernetes Operator for Percona XtraDB Cluster 1.4.0
	New Features
	Improvements
	Bugs Fixed

	Percona Kubernetes Operator for Percona XtraDB Cluster 1.3.0
	Percona Kubernetes Operator for Percona XtraDB Cluster 1.2.0
	Percona Kubernetes Operator for Percona XtraDB Cluster 1.1.0
	Percona Kubernetes Operator for Percona XtraDB Cluster 1.0.0
	Installation

	Index

